World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells

    https://doi.org/10.1142/9789814317665_0009Cited by:7 (Source: Crossref)
    Abstract:

    Low-cost photovoltaic energy conversion using conjugated molecular materials has become increasingly feasible through the development of organic ‘bulk heterojunction (BHJ)’ structures1–7, where efficient light-induced charge separation is enabled by a large-area donor–acceptor interface2,3. The highest efficiencies have been achieved using blends of poly(3-hexylthiophene) (P3HT) and a fullerene derivative8–12, but performance depends critically on the material properties and processing conditions. This variability is believed to be influenced by the self-organizing properties of P3HT, which means that both optical13,14 and electronic15,16 properties are sensitive to the molecular packing. However, the relationship between molecular nanostructure, optoelectronic properties of the blend material and device performance has not yet been demonstrated. Here we focus on the influence of polymer regioregularity (RR) on the molecular nanostructure, and hence on the resulting material properties and device performance. We find a strong influence of RR on solar-cell performance, which can be attributed to enhanced optical absorption and transport resulting from the organization of P3HT chains and domains. Further optimization of devices using the highest RR material resulted in a power conversion efficiency of 4.4%, even without optimization of electrodes7.