World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GENETIC PROGRAMMING OF POLYNOMIAL HARMONIC NETWORKS USING THE DISCRETE FOURIER TRANSFORM

    https://doi.org/10.1142/S0129065702001242Cited by:0 (Source: Crossref)

    This paper presents a genetic programming system that evolves polynomial harmonic networks. These are multilayer feed-forward neural networks with polynomial activation functions. The novel hybrids assume that harmonics with non-multiple frequencies may enter as inputs the activation polynomials. The harmonics with non-multiple, irregular frequencies are derived analytically using the discrete Fourier transform. The polynomial harmonic networks have tree-structured topology which makes them especially suitable for evolutionary structural search. Empirical results show that this hybrid genetic programming system outperforms an evolutionary system manipulating polynomials, the traditional Koza-style genetic programming, and the harmonic GMDH network algorithm on processing time series.

    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!