World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NEURAL NETWORKS, PRINCIPAL COMPONENTS, AND SUBSPACES

    https://doi.org/10.1142/S0129065789000475Cited by:631 (Source: Crossref)

    A single neuron with Hebbian-type learning for the connection weights, and with nonlinear internal feedback, has been shown to extract the statistical principal components of its stationary input pattern sequence. A generalization of this model to a layer of neuron units is given, called the Subspace Network, which yields a multi-dimensional, principal component subspace. This can be used as an associative memory for the input vectors or as a module in nonsupervised learning of data clusters in the input space. It is also able to realize a powerful pattern classifier based on projections on class subspaces. Some classification results for natural textures are given.