World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on the 25th Annual Symposium of Connecticut Microelectronics and Optoelectronics Consortium (CMOC) held on April 6, 2016; Edited by F. Jain, C. Broadbridge and H. TangNo Access

A Low-Power Low-Data Rate Impulse Radio Ultra-Wideband (IR-UWB) Transmitter

    https://doi.org/10.1142/S0129156417400134Cited by:2 (Source: Crossref)

    A low-power and low-data-rate (100 kbps) fully integrated CMOS impulse radio ultra-wideband (IR-UWB) transmitter for biomedical application is presented in this paper. The transmitter is designed using a standard 180-nm CMOS technology that operates at the 3.1-5 GHz frequency range with more than 500 MHz of channel bandwidth. Modulation scheme of this transmitter is based on on-off keying (OOK) in which a short pulse represents binary “1” and absence of a pulse represents binary “0” transmission. During the ‘off’ state (sleep mode) the transmitter consumes only 0.4 μW of power for an operating voltage of 1.8 V while during the impulse transmission state it consumes a power of 36.29 μW. A pulse duration of about 3.5 ns and a peak amplitude of the frequency spectrum of about -47.8 dBm/MHz are obtained in the simulation result which fully complies with Federal Communication Commission (FCC) regulation.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas