World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Complex network structure of flocks in the Vicsek Model with Vectorial Noise

    https://doi.org/10.1142/S0129183113500952Cited by:4 (Source: Crossref)

    In the Vicsek Model (VM), self-driven individuals try to adopt the direction of movement of their neighbors under the influence of noise, thus leading to a noise-driven order–disorder phase transition. By implementing the so-called Vectorial Noise (VN) variant of the VM (i.e. the VM-VN model), this phase transition has been shown to be discontinuous (first-order). In this paper, we perform an extensive complex network study of VM-VN flocks and show that their topology can be described as highly clustered, assortative, and nonhierarchical. We also study the behavior of the VM-VN model in the case of "frozen flocks" in which, after the flocks are formed using the full dynamics, particle displacements are suppressed (i.e. only rotations are allowed). Under this kind of restricted dynamics, we show that VM-VN flocks are unable to support the ordered phase. Therefore, we conclude that the particle displacements at every time-step in the VM-VN dynamics are a key element needed to sustain long-range ordering throughout.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!