World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Community detection in bipartite networks using weighted symmetric binary matrix factorization

    https://doi.org/10.1142/S0129183115500965Cited by:18 (Source: Crossref)

    In this paper, we propose weighted symmetric binary matrix factorization (wSBMF) framework to detect overlapping communities in bipartite networks, which describes the relationships between two types of nodes. Our method improves performance by recognizing the distinction between two types of missing edges — ones among the nodes in each node type and the others between two node types. Our method can also explicitly assign community membership and distinguish outliers from overlapping nodes, as well as incorporating existing knowledge on the network. We propose a generalized partition density for bipartite networks as a quality function, which identifies the most appropriate number of communities. The experimental results on both synthetic and real-world networks demonstrate the effectiveness of our method.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!