World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on High-Level Parallel Programming and ApplicationsNo Access

A Power-Aware, Self-Adaptive Macro Data Flow Framework

    https://doi.org/10.1142/S0129626417400047Cited by:8 (Source: Crossref)

    The dataflow programming model has been extensively used as an effective solution to implement efficient parallel programming frameworks. However, the amount of resources allocated to the runtime support is usually fixed once by the programmer or the runtime, and kept static during the entire execution. While there are cases where such a static choice may be appropriate, other scenarios may require to dynamically change the parallelism degree during the application execution. In this paper we propose an algorithm for multicore shared memory platforms, that dynamically selects the optimal number of cores to be used as well as their clock frequency according to either the workload pressure or to explicit user requirements. We implement the algorithm for both structured and unstructured parallel applications and we validate our proposal over three real applications, showing that it is able to save a significant amount of power, while not impairing the performance and not requiring additional effort from the application programmer.

    Communicated by Guest Editors