World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Truncated many-body dynamics of interacting bosons: A variational principle with error monitoring

    https://doi.org/10.1142/S0217979215500216Cited by:17 (Source: Crossref)

    We develop a method to describe the temporal evolution of an interacting system of bosons, for which the field operator expansion is truncated after a finite number M of modes, in a rigorously controlled manner. Using McLachlan's principle of least error, we find a self-consistent set of equations for the many-body state. As a particular benefit and in distinction to previously proposed approaches, the presently introduced method facilitates the dynamical increase of the number of orbitals during the temporal evolution, due to the fact that we can rigorously monitor the error made by increasing the truncation dimension M. The additional orbitals, determined by the condition of least error of the truncated evolution relative to the exact one, are obtained from an initial trial state by steepest constrained descent.

    PACS: 03.75.Nt, 03.75.Gg
    You currently do not have access to the full text article.

    Recommend the journal to your library today!