World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE RELATION BETWEEN FLUCTUATION AND SCALING-LAW IN GENE EXPRESSION TIME SERIES FROM YEAST TO HUMAN

    https://doi.org/10.1142/S0217984905009249Cited by:15 (Source: Crossref)

    In this work, the dynamics of fluctuations in gene expression time series is investigated. By using collected data of gene expression from yeast and human organisms, we found that the fluctuations of gene expression level and the average value of gene expression over time are strongly correlated and obey a scaling law. As this feature is found in yeast and human organisms, it suggests that probably this coupling is a common dynamical organizing property of all living systems. To understand these observations, we propose a stochastic model which can explain these collective fluctuations, and predict the scaling exponent. Interestingly, our results indicate that the observed scaling law emerges from the self-similarity symmetry embedded in gene expression fluctuations.