Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Reconfigurable Fractional-Order Filter with Electronically Controllable Slope of Attenuation, Pole Frequency and Type of Approximation

    https://doi.org/10.1142/S0218126617501572Cited by:50 (Source: Crossref)

    This paper presents design of electronically reconfigurable fractional-order filter that is able to be configured to operate as fractional-order low-pass filter (FLPF) or fractional-order high-pass filter (FHPF). Its slope of attenuation between pass band and stop band, i.e., order of the filter, is electronically adjustable in the range between 1 and 2. Also, pole frequency can be electronically controlled independently with respect to other tuned parameters. Moreover, particular type of approximation can be also controlled electronically. This feature set is available both for FLPF and FHPF-type of response. Presented structure of the filter is based on well-known follow-the-leader feedback (FLF) topology adjusted in our case for utilization with just simple active elements operational transconductance amplifiers (OTAs) and adjustable current amplifiers (ACAs), both providing possibility to control its key parameter electronically. This paper explains how reconfigurable third-order FLF topology is used in order to approximate both FLPF and FHPF in concerned frequency band of interest. Design is supported by PSpice simulations for three particular values of order of the filter (1.25, 1.5, 1.75), for several values of pole frequency and for two particular types of approximation forming the shape of both the magnitude and phase response. Moreover, theoretical presumptions are successfully confirmed by laboratory measurements with prepared prototype based on behavioral modeling.

    This paper was recommended by Regional Editor Piero Malcovati.