World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHAOS AND WEATHER FORECASTING: THE ROLE OF THE UNSTABLE SUBSPACE IN PREDICTABILITY AND STATE ESTIMATION PROBLEMS

    https://doi.org/10.1142/S0218127411030635Cited by:31 (Source: Crossref)

    In the first part of this paper, we review some important results on atmospheric predictability, from the pioneering work of Lorenz to recent results with operational forecasting models. Particular relevance is given to the connection between atmospheric predictability and the theory of Lyapunov exponents and vectors. In the second part, we briefly review the foundations of data assimilation methods and then we discuss recent results regarding the application of the tools typical of chaotic systems theory described in the first part to well established data assimilation algorithms, the Extended Kalman Filter (EKF) and Four Dimensional Variational Assimilation (4DVar). In particular, the Assimilation in the Unstable Space (AUS), specifically developed for application to chaotic systems, is described in detail.