World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Numerical Scheme for Computing Stable and Unstable Manifolds in Nonautonomous Flows

    https://doi.org/10.1142/S021812741630041XCited by:3 (Source: Crossref)

    There are many methods for computing stable and unstable manifolds in autonomous flows. When the flow is nonautonomous, however, difficulties arise since the hyperbolic trajectory to which these manifolds are anchored, and the local manifold emanation directions, are changing with time. This article utilizes recent results which approximate the time-variation of both these quantities to design a numerical algorithm which can obtain high resolution in global nonautonomous stable and unstable manifolds. In particular, good numerical approximation is possible locally near the anchor trajectory. Nonautonomous manifolds are computed for two examples: a Rossby wave situation which is highly chaotic, and a nonautonomus (time-aperiodic) Duffing oscillator model in which the manifold emanation directions are rapidly changing. The numerical method is validated and analyzed in these cases using finite-time Lyapunov exponent fields and exactly known nonautonomous manifolds.