Effective boundary conditions for compressible flows over rough boundaries
Abstract
Simulations of a flow over a roughness are prohibitively expensive for small-scale structures. If the interest is only on some macroscale quantity it will be sufficient to model the influence of the unresolved microscale effects. Such multiscale models rely on an appropriate upscaling strategy. Here the strategy originally developed by Achdou et al. [Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys.147 (1998) 187–218] for incompressible flows is extended to compressible high Reynolds number flow. For proof of concept a laminar flow over a flat plate with partially embedded roughness is simulated. The results are compared with computations on a rough domain.