STICK INDEX OF KNOTS AND LINKS IN THE CUBIC LATTICE
Abstract
The cubic lattice stick index of a knot type is the least number of sticks glued end-to-end that are necessary to construct the knot type in the 3-dimensional cubic lattice. We present the cubic lattice stick index of various knots and links, including all (p, p + 1)-torus knots, and show how composing and taking satellites can be used to obtain the cubic lattice stick index for a relatively large infinite class of knots. Additionally, we present several bounds relating cubic lattice stick index to other known invariants.