World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STICK INDEX OF KNOTS AND LINKS IN THE CUBIC LATTICE

    https://doi.org/10.1142/S0218216511009935Cited by:13 (Source: Crossref)

    The cubic lattice stick index of a knot type is the least number of sticks glued end-to-end that are necessary to construct the knot type in the 3-dimensional cubic lattice. We present the cubic lattice stick index of various knots and links, including all (p, p + 1)-torus knots, and show how composing and taking satellites can be used to obtain the cubic lattice stick index for a relatively large infinite class of knots. Additionally, we present several bounds relating cubic lattice stick index to other known invariants.

    AMSC: 57M25, 57M27