World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TIME EVOLUTION OF A NONSINGULAR PRIMORDIAL BLACK HOLE

    https://doi.org/10.1142/S0218271812500277Cited by:0 (Source: Crossref)

    There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial Black holes (PBHs) and possibly on their contribution to cosmic energy. This paper discusses the evolution of a nonsingular black hole (NSBH) based on a recent model [M. R. Mbonye and D. Kazanas, Phys. Rev. D. 72 (2005) 024016]. The model is used to discuss the time evolution of a primordial black hole (PBH), through the early radiation era of the universe to present, under the assumption that PBHs are nonsingular. In particular, we track the evolution of two benchmark PBHs, namely the one radiating up to the end of the cosmic radiation domination era, and the one stopping to radiate currently, and in each case determine some useful features including the initial mass mf and the corresponding time of formation tf. It is found that along the evolutionary history of the universe the distribution of PBH remnant masses (PBH-RM) PBH-RMs follows a power law. We believe such a result can be a useful step in a study to establish current abundance of PBH-MRs.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!