World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Neutron stars and supernova explosions in the framework of Landau's theory

    https://doi.org/10.1142/S0218301315500597Cited by:1 (Source: Crossref)

    In this paper, a general formula of the symmetry energy for many-body interaction is proposed and the commonly used two-body interaction symmetry energy is recovered. Within Landau's theory (Lt), we generalize two equations of state (EoS) CCSδ3 and CCSδ5 to asymmetric nuclear matter. We assume that the density and density difference between protons and neutrons divided by their sum are order parameters. We use different EoS to study neutron stars by solving the TOV equations. We demonstrate that different EoS give different mass and radius relation for neutron stars even when they have exactly the same ground state (gs) properties (E/A, ρ0, K, S, L and Ksym). Furthermore, for one EoS we change Ksym and fix all the other gs parameters. We find that for some Ksym the EoS becomes unstable at high density even for neutron matter. This suggests that a neutron star (NS) can exist below and above the instability region but in different states: a quark gluon plasma (QGP) at high density and baryonic matter at low density. If the star's central density is in the instability region, then we associate these conditions to the occurrence of supernovae (SN).

    PACS: 26.60.Kp, 97.60.Jd
    You currently do not have access to the full text article.

    Recommend the journal to your library today!