World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Low-energy meson spectrum from a QCD approach based on many-body methods

    https://doi.org/10.1142/S0218301317500823Cited by:10 (Source: Crossref)

    The Tamm–Dancoff Approximation (TDA) and Random Phase Approximation (RPA) many-body methods are applied to an effective Quantum Chromodynamics (QCD) Hamiltonian in the Coulomb gauge. The gluon effects in the low-energy domain are accounted for by the Instantaneous color-Coulomb Interaction between color-charge densities, approximated by the sum of a Coulomb (α/r) and a confining linear (βr) potential. We use the eigenfunctions of the harmonic oscillator as a basis for the quantization of the quark fields, and discuss how suitable this basis is in various steps of the calculation. We show that the TDA results already reproduce the gross-structure of the light-flavored meson states. The pion-like state, which in the RPA description is a highly collective state, is in better agreement with the experimental value. The results are related to other nonperturbative treatments and compared to experimental data. We discuss the advantages of the present approach.

    PACS: 12.38.−t, 12.40.Yx, 14.40.−n, 21.60.Fw
    You currently do not have access to the full text article.

    Recommend the journal to your library today!