World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SIMULTANEOUS EFFECT OF TWO TOXICANTS ON BIOLOGICAL SPECIES: A MATHEMATICAL MODEL

    https://doi.org/10.1142/S0218339096000090Cited by:36 (Source: Crossref)

    In this paper, a mathematical model to study the simultaneous effect of two toxicants (one is more toxic than the other) on the growth and survival of a biological species is proposed. The cases of instantaneous spill, constant and periodic emissions of each of the toxicant into the environment are considered. It is shown that in the case of an instantaneous spill of each of the toxicant into the environment, the species after its initial decrease in density may recover to its original level after a period of time, the magnitude of which depends on the toxicity and washout rate of each of the toxicant. However, if both the toxicants are emitted with constant rates, the species in the habitat is doomed to extinction sooner than the case of a single toxicant having the same influx and washout rates as one of them, the extinction rate becoming faster with the increase in toxicity and emission rate of the other toxicant. It is also shown that for a small amplitude periodic emission of the toxicant with a constant mean, the stability behavior of the system is same as that of the case of the constant emission. It is found further through the model study that if suitable efforts are made to reduce the emission rate of each of the toxicant at the source and its concentration in the environment by some removal mechanism, an appropriate level of species density can be maintained.