World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STUDY ON SOLIDIFICATION OF PHASE CHANGE MATERIAL IN FRACTAL POROUS METAL FOAM

    https://doi.org/10.1142/S0218348X15400034Cited by:18 (Source: Crossref)
    This article is part of the issue:

    The Sierpinski fractal is introduced to construct the porous metal foam. Based on this fractal description, an unsteady heat transfer model accompanied with solidification phase change in fractal porous metal foam embedded with phase change material (PCM) is developed and numerically analyzed. The heat transfer processes associated with solidification of PCM embedded in fractal structure is investigated and compared with that in single-pore structure. The results indicate that, for the solidification of phase change material in fractal porous metal foam, the PCM is dispersedly distributed in metal foam and the existence of porous metal matrix provides a fast heat flow channel both horizontally and vertically, which induces the enhancement of interstitial heat transfer between the solid matrix and PCM. The solidification performance of the PCM, which is represented by liquid fraction and solidification time, in fractal structure is superior to that in single-pore structure.