World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PERFORMANCE EVALUATION OF FUZZY SINGLE LAYER WEIGHTLESS NEURAL NETWORK

    https://doi.org/10.1142/S021848850700473XCited by:1 (Source: Crossref)

    The paper evaluates the performance of a neuro-fuzzy pattern classification system based on the weightless neural network architecture. The system utilizes a Single Layer Weightless Neural Network (SLWNN) to extract the features vector that measures the similarity of the input pattern to the different classification groups. In contrast to the traditional crisp Winner-Takes-All (WTA) classification scheme used by SLWNN, our system uses a Fuzzy Inference System (FIS) for classification. The network is trained by a hybrid learning scheme that combines a single pass learning phase for training the SLWNN followed by a supervised learning phase for extracting a set of fuzzy rules suitable to classify the training set. The FIS learns fuzzy rules from the feature vectors generated by the SLWNN for the set of training patterns. The recognition of handwritten numerals is employed as a test-bed to demonstrate the effectiveness of the proposed neuro-fuzzy system. Experimental results show that the performance of the proposed system surpasses the performance of the traditional SLWNN.