World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Hybrid Computation Model for Intelligent System Design by Synergism of Modified EFC with Neural Network

    https://doi.org/10.1142/S0219622014500813Cited by:2 (Source: Crossref)

    In recent past, it has been seen in many applications that synergism of computational intelligence techniques outperforms over an individual technique. This paper proposes a new hybrid computation model which is a novel synergism of modified evolutionary fuzzy clustering with associated neural networks. It consists of two modules: fuzzy distribution and neural classifier. In first module, mean patterns are distributed into the number of clusters based on the modified evolutionary fuzzy clustering, which leads the basis for network structure selection and learning in associated neural classifier. In second module, training and subsequent generalization is performed by the associated neural networks. The number of associated networks required in the second module will be same as the number of clusters generated in the first module. Whereas, each network contains as many output neurons as the maximum number of members assigned to each cluster. The proposed hybrid model is evaluated over wide spectrum of benchmark problems and real life biometric recognition problems even in presence of real environmental constraints such as noise and occlusion. The results indicate the efficacy of proposed method over related techniques and endeavor promising outcomes for biometric applications with noise and occlusion.