World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Exploration of Crime Prediction Using Data Mining on Open Data

    https://doi.org/10.1142/S0219622017500250Cited by:34 (Source: Crossref)

    The increase in crime data recording coupled with data analytics resulted in the growth of research approaches aimed at extracting knowledge from crime records to better understand criminal behavior and ultimately prevent future crimes. While many of these approaches make use of clustering and association rule mining techniques, there are fewer approaches focusing on predictive models of crime. In this paper, we explore models for predicting the frequency of several types of crimes by LSOA code (Lower Layer Super Output Areas — an administrative system of areas used by the UK police) and the frequency of anti-social behavior crimes. Three algorithms are used from different categories of approaches: instance-based learning, regression and decision trees. The data are from the UK police and contain over 600,000 records before preprocessing. The results, looking at predictive performance as well as processing time, indicate that decision trees (M5P algorithm) can be used to reliably predict crime frequency in general as well as anti-social behavior frequency.