World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DE-QUANTIZING THE SOLUTION OF DEUTSCH'S PROBLEM

    https://doi.org/10.1142/S021974990700292XCited by:11 (Source: Crossref)

    Probably the simplest and most frequently used way to illustrate the power of quantum computing is to solve the so-called Deutsch's problem. Consider a Boolean function f: {0,1} → {0,1} and suppose that we have a (classical) black box to compute it. The problem asks whether f is constant [that is, f(0) = f(1)] or balanced [f(0) ≠ f(1)]. Classically, to solve the problem seems to require the computation of f(0) and f(1), and then the comparison of results. Is it possible to solve the problem with only one query on f? In a famous paper published in 1985, Deutsch posed the problem and obtained a "quantum" partial affirmative answer. In 1998, a complete, probability-one solution was presented by Cleve, Ekert, Macchiavello and Mosca. Here we will show that the quantum solution can be de-quantized to a deterministic simpler solution which is as efficient as the quantum one. The use of "superposition," a key ingredient of quantum algorithm, is — in this specific case — classically available.