An Iterative Numerical Method for Solving the Lane–Emden Initial and Boundary Value Problems
Abstract
In this paper, we propose fast iterative methods based on the Newton–Raphson–Kantorovich approximation in function space [Bellman and Kalaba, (1965)] to solve three kinds of the Lane–Emden type problems. First, a reformulation of the problem is performed using a quasilinearization technique which leads to an iterative scheme. Such scheme consists in an ordinary differential equation that uses the approximate solution from the previous iteration to yield the unknown solution of the current iteration. At every iteration, a further discretization of the problem is achieved which provides the numerical solution with low computational cost. Numerical simulation shows the accuracy as well as the efficiency of the method.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in finite element methods! |