Formation and characterization of five- and six-coordinate iron(III) corrolazine complexes
Abstract
Electronic structures of five- and six-coordinate iron(III) corrolazine complexes are determined by means of 1H NMR, 13C NMR, EPR, and Mössbauer spectroscopy as well as SQUID magnetometry. A series of five-coordinate complexes, [FeIII(TBP8Cz)(L)]* where the axial ligands(L) are cyanide(CN-), imidazole(HIm), 1-methylimidazole(1-MeIm), 4-(N,N-dimethylamino)pyridine(DMAP), pyridine(Py), 4-cyanopyridine(4-CNPy), and tert-butylisocyanide(tBuNC), are obtained by the addition of 1 to 2 equiv. of the ligands to the dichloromethane solutions of FeIII(TBP8Cz) at 298 K: TBP8Cz is a trianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)corrolazine. These complexes commonly show the S = 3/2 at 298 K. By contrast, formation of the six-coordinate complexes depends on the nature of the axial ligands. While the addition of 3 equiv. of CN- has completely converted FeIII(TBP8Cz) to (Bu4N)2[FeIII(TBP8Cz)(CN)2] at 298 K, the conversion to the bis-adduct is only attained below ca. 200 K in the case of HIm, 1-MeIm, and DMAP even in the presence of 50 equiv. of the ligands. If the axial ligand is Py, 4-CNPy, or tBuNC, the formation of [FeIII(TBP8Cz)(L)2] is confirmed only at an extremely low temperature (15 K). Close inspection of the 1H NMR and EPR spectra has revealed that all the bis-adducts adopt the (dxy)2(dxz, dyz)3 ground state. While FeIII(TBP8Cz) forms paramagnetic bis- and mono-adduct in toluene solution at 298 K in the presence of excess amount of CN- and tBuNC, respectively, the corresponding porphyrazine complex, [FeIII(TBP8Pz)]Cl, forms diamagnetic bis-CN and bis-tBuNC under the same conditions: TBP8Pz is a dianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)-porphyrazine. Thus, the iron(III) ion of porphyrazine complex is more easily reduced than that of the corresponding corrolazine complex.

Dedicated to Professor Emanuel Vogel in memoriam
Handbook of Porphyrin Science now available in 46 volumes