World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Effects of porphyrin deformation on the 13C and 1H NMR chemical shifts in high-spin five- and six-coordinate manganese(III) porphyrin complexes

    https://doi.org/10.1142/S1088424616500085Cited by:8 (Source: Crossref)

    As an extension of our study to reveal the effect of porphyrin deformation on the 13C and 1H NMR chemical shifts, both five- and six-coordinate high-spin (S = 2) Mn(III) complexes such as Mn(Por)Cl and [Mn(Por)(CD3OD)2]Cl have been prepared, where Por is a porphyrin dianion such as TPP, OMTPP, and TiPrP. Molecular structures of five-coordinate Mn(OMTPP)Cl and Mn(TiPrP)Cl have been determined by the X-ray crystallographic analysis. As expected, Mn(OMTPP)Cl and Mn(TiPrP)Cl have exhibited a highly saddled and highly ruffled porphyrin core, respectively. The 13C NMR spectra have revealed that these complexes generally exhibit the α-pyrrole signals at the downfield positions and β-pyrrole an. meso signals at the upfield positions. The results suggest that the spin polarization of Mn(III)–NP σ bonds, which occurs in all the high-spin Mn(III) complexes, is the major factor to determine the chemical shifts of the porphyrin carbon signals (Cheng, R.-J.; Chang, S.-H.; Hung, K.-C. Inorg. Chem. 2007; 46: 1948–1950). Although th. meso and α-pyrrole signals are observed at the upfield and downfield positions, respectively, these signals are widely dispersed depending on the deformation mode of the porphyrin ring. The results have been explained in terms of the strong spin polarization of the Mn–NP bond together with the specific metal-porphyrin orbital interactions such as: (i) the a2u-dz2 interaction in five-coordinate complexes, (ii) the a2u-dxy interaction in ruffled complexes, and (iii) the a2u-dx2-y2 interaction in saddled complexes.

    Dedicated to Professor Kevin M. Smith on the occasion of his 70th birthday and for his 50 years contribution to the porphyrin chemistry

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes