World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DESIGN OF EXPERIMENTS IN NEURO-FUZZY SYSTEMS

    https://doi.org/10.1142/S1469026810002823Cited by:12 (Source: Crossref)

    Interest in hybrid methods that combine artificial neural networks and fuzzy inference systems has grown in recent years. These systems are robust solutions that search for representations of domain knowledge, reasoning on uncertainty, automatic learning and adaptation. However, the design and definition of the parameter effectiveness of such systems is still a hard task. In the present work, we perform a statistical analysis to verify interactions and interrelations between parameters in the design of neuro-fuzzy systems. The analysis is carried out using a powerful statistical tool, namely, Design of Experiments (DOE), in two neuro-fuzzy models — Adaptive Neuro Fuzzy Inference System (ANFIS) and Evolving Fuzzy Neural Networks (EFuNN). The results show that, for ANFIS, input MFs number and output MFs shape are usually the factors with the largest influence on the system's RMSE. For EFFuNN, the MF shape and the interaction between MF shape and number usually have the largest effect size.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!