World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TORSION POINTS ON ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION (WITH AN APPENDIX BY ALEX RICE)

    https://doi.org/10.1142/S1793042112501436Cited by:20 (Source: Crossref)

    We present seven theorems on the structure of prime order torsion points on CM elliptic curves defined over number fields. The first three results refine bounds of Silverberg and Prasad–Yogananda by taking into account the class number of the CM order and the splitting of the prime in the CM field. In many cases we can show that our refined bounds are optimal or asymptotically optimal. We also derive asymptotic upper and lower bounds on the least degree of a CM-point on X1(N). Upon comparison to bounds for the least degree for which there exist infinitely many rational points on X1(N), we deduce that, for sufficiently large N, X1(N) will have a rational CM point of degree smaller than the degrees of at least all but finitely many non-CM points.

    AMSC: 11G05, 11G15