World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
BRIEF REPORTSNo Access

Electrochemical Performance of Lithium-Ion Capacitors Using Pre-Lithiated Multiwalled Carbon Nanotubes as Anode

    https://doi.org/10.1142/S1793292017500515Cited by:20 (Source: Crossref)

    Pre-lithiated multiwalled carbon nanotube anode was prepared by internal short circuit approach(ISC) for 5min, 30min, 60min and 120min respectively. Lithium ion capacitors (LICs) were assembled by using pre-lithiated multiwalled carbon nanotubes as anodes and activated carbon (AC) as cathodes. The structure of multiwalled carbon nanotubes and electrodes were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical performance of pre-lithiated multiwalled carbon nanotube electrodes and pristine carbon nanotube electrodes were tested by galvanostatic charge/discharge and electrochemical impedance. The results indicated that pre-lithiation carbon nanotubes greatly improved the charge/discharge performance of LICs. The energy density was four times than conventional electric double-layer capacitors (EDLCs) at the current density of 100mA/g. The LICs achieved a specific capacitance of 59.3F/g at the current density of 100mA/g with 60min pre-lithiatiation process. The maximum energy density and power density was 96Wh/kg and 4035W/kg, respectively. The energy density still remained about 89.0% after 1000 cycles. The LIC showed excellent supercapacitor performance.