INFLUENCE OF SINTERING CONDITIONS ON DOPED PZT CERAMICS FOR BASE-METAL ELECTRODE MULTILAYER ACTUATORS
Abstract
The influence of sintering atmosphere and copper addition on the microstructural and piezoelectric properties of Mn-doped lead zirconate titanate ceramics (PZT) was investigated. This ceramic powder densifies below 1000°C, enabling the use of copper inner electrodes for a multilayer actuator setup. To simulate the influence of oxidized inner electrodes during sintering, different CuO contents (0 and 1 mol.%) were mixed to the precalcined Mn-doped PZT powder. Ceramic discs were sintered at 950°C in air and analogously in N2, or in steam containing N2 (25 vol.% water vapor content). The electrical characterization of the discs showed that the piezoelectric properties are influenced by the CuO addition as well as by the sintering atmospheres. The large signal piezoelectric constant shows an improvement of at least 20% when CuO is added. CuO acts as a sintering aid, and especially when the ceramics are fired in steam-containing N2, anomalous grain growth occurs.