ON OPEN RECTANGLE-OF-INFLUENCE AND RECTANGULAR DUAL DRAWINGS OF PLANE GRAPHS
Abstract
Irreducible triangulations are plane graphs with a quadrangular exterior face, triangular interior faces and no separating triangles. Fusy proposed a straight-line grid drawing algorithm for irreducible triangulations, whose grid size is asymptotically with high probability 11n/27 × 11n/27 up to an additive error of . Later on, Fusy generalized the idea to quadrangulations and obtained a straight-line grid drawing, whose grid size is asymptotically with high probability 13n/27 × 13n/27 up to an additive error of
. In this paper, we first prove that the above two straight-line grid drawing algorithms for irreducible triangulations and quadrangulations actually produce open rectangle-of-influence drawings for them respectively. Therefore, the above mentioned straight-line grid drawing size bounds also hold for the open rectangle-of-influence drawings. These results improve previous known drawing sizes.
In the second part of the paper, we present another application of the results obtained by Fusy. We present a linear time algorithm for constructing a rectangular dual for a randomly generated irreducible triangulation with n vertices, one of its dimensions equals asymptotically with high probability, up to an additive error of
. In addition, we prove that the one dimension tight bound for a rectangular dual of any irreducible triangulations with n vertices is (n + 1)/2.