World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON OPEN RECTANGLE-OF-INFLUENCE AND RECTANGULAR DUAL DRAWINGS OF PLANE GRAPHS

    https://doi.org/10.1142/S1793830909000257Cited by:6 (Source: Crossref)

    Irreducible triangulations are plane graphs with a quadrangular exterior face, triangular interior faces and no separating triangles. Fusy proposed a straight-line grid drawing algorithm for irreducible triangulations, whose grid size is asymptotically with high probability 11n/27 × 11n/27 up to an additive error of . Later on, Fusy generalized the idea to quadrangulations and obtained a straight-line grid drawing, whose grid size is asymptotically with high probability 13n/27 × 13n/27 up to an additive error of . In this paper, we first prove that the above two straight-line grid drawing algorithms for irreducible triangulations and quadrangulations actually produce open rectangle-of-influence drawings for them respectively. Therefore, the above mentioned straight-line grid drawing size bounds also hold for the open rectangle-of-influence drawings. These results improve previous known drawing sizes.

    In the second part of the paper, we present another application of the results obtained by Fusy. We present a linear time algorithm for constructing a rectangular dual for a randomly generated irreducible triangulation with n vertices, one of its dimensions equals asymptotically with high probability, up to an additive error of . In addition, we prove that the one dimension tight bound for a rectangular dual of any irreducible triangulations with n vertices is (n + 1)/2.

    AMSC: 05C85, 05C90, 94C15