World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analytical solution for the size of the minimum dominating set in complex networks

    https://doi.org/10.1142/S1793962317500052Cited by:1 (Source: Crossref)

    Domination is the fastest-growing field within graph theory with a profound diversity and impact in real-world applications, such as the recent breakthrough approach that identifies optimized subsets of proteins enriched with cancer-related genes. Despite its conceptual simplicity, domination is a classical NP-complete decision problem which makes analytical solutions elusive and poses difficulties to design optimization algorithms for finding a dominating set of minimum cardinality in a large network. Here, we derive for the first time an approximate analytical solution for the density of the minimum dominating set (MDS) by using a combination of cavity method and ultra-discretization (UD) procedure. The derived equation allows us to compute the size of MDS by only using as an input the information of the degree distribution of a given network.