World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Multi-Agent Optimization Design for Autonomous Lagrangian Systems

    https://doi.org/10.1142/S230138501640001XCited by:63 (Source: Crossref)

    In this paper, distributed optimization control for a group of autonomous Lagrangian systems is studied to achieve an optimization task with local cost functions. To solve the problem, two continuous-time distributed optimization algorithms are designed for multiple heterogeneous Lagrangian agents with uncertain parameters. The proposed algorithms are proved to be effective for those heterogeneous nonlinear agents to achieve the optimization solution in the semi-global sense, even with the exponential convergence rate. Moreover, simulation adequately illustrates the effectiveness of our optimization algorithms.

    This paper was recommended for publication in its revised form by Special Issue Guest Editor, Lu Liu.