World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GLOBAL FEATURE FOR LEFT VENTRICULAR DYSFUNCTION DETECTION BASED ON SHAPE DEFORMATION TRACKING

    https://doi.org/10.4015/S1016237215500179Cited by:1 (Source: Crossref)

    Left ventricular (LV) shape alteration is closely correlated with cardiac disease and LV function. In this paper, we propose a feature to detect LV dysfunction globally by analyzing the LV shape deformation in systolic contraction. The feature is an index that is extracted from geometric measurement of LV shape such as the length of the long axis, the short axis, and the apical diameter. A framework for computing the features is also proposed that consists of shape model construction and motion estimation of myocardial boundary. The LV shape model is extracted from apical 2 and 4 chamber views of 2D echocardiography. The long axis, the short axis, and the apical diameter were redefined according to the LV shape constructed. An optical flow technique was used to estimate the position of the LV boundary in each frame. The classification of the LV dysfunction was performed using linear discriminant analysis (LDA) and neural networks (NNs). The 2D echocardiography dataset collected from routine clinical check-up were used to validate the proposed method by comparing the computation result and cardiac expert diagnose. Classification performance and statistical analysis, which was performed to discriminate between healthy and diseased data, indicated promising results. The global LV features would provide a strong basis for a global LV function diagnosis and a global cardiac pathology assessment.