Media Release
Media Contact:
Philly Lim, Press Officer
Tel: (65) 64665775, Ext. 271
Email: mllim@wspc.com
Illustration of the all-on-chip method for neutrophil chemotaxis analysis using the microfluidic device. Ab-MP: antibody cocktail-magnetic particles.
A team of researchers from the University of Manitoba in collaboration with local clinical scientists in Winnipeg, Canada, have developed a new method for rapid neutrophil chemotaxis test directly from a small drop of whole blood using a microfluidic system. Although many microfluidic devices have been developed for quantitative immune cell migration studies and relevant clinical applications, cell isolation from blood in most studies still relied on specialized facilities. The process is labor-intensive, time-consuming, requires specialized skills, and often causes cell pre-activation. Direct isolation of specific blood cell types of interest from whole blood followed by cell migration experiment all on the same microfluidic device is highly desirable. In this direction, the present method provides easy-to-use microfluidic devices for efficient on-chip magnetic negative neutrophil isolation from a small drop of whole blood using reagents from a new commercial kit followed by neutrophil chemotaxis assay all on the same device. Furthermore, the integrated standalone microfluidic gradient generator and cell-docking structure improve the control of cell migration experiment, which enables easier and more accurate chemotaxis analysis. The whole experiment can be done in less than 25 minutes. The method was successfully validated by testing neutrophil chemotaxis to both purified chemoattractant (i.e. fMLP) and clinical samples (sputum from patients with Chronic Obstructive Pulmonary Disease). This report appears in a forthcoming issue of the journal TECHNOLOGY.
"The traditional cell preparation method significantly limits the efficiency of neutrophil chemotaxis experiment and makes it difficult to run the test in clinical settings. The developed all-on-chip method effectively removed this bottleneck. Furthermore, the integrated cell-docking feature permits cell pre-alignment in the device before chemotaxis experiment, and therefore it can provide instant chemotaxis test result at the end of the experiment based on the final positions of the cells," says Professor Francis Lin in the Department of Physics and Astronomy at the University of Manitoba and Principal Investigator of this study.
"One of the most attractive features of our technology is the minimal requirement for assay operation, which is very important for its practical use in life science labs and clinical labs. In addition to neutrophils that we used for proof-of-concept, there is a growing potential to extend our approach to test the migration of other cell types from blood upon availability of the corresponding magnetic cell isolation kits." says Dr. Jiandong Wu, a MITACS Postdoc Fellow in the Lin lab and the leading author of this paper. "The technology can be broadly applied" added by Professor Lin, "We plan to further apply it to study the migration of different immune cell types, cancer cells and stem cells. We already demonstrated that this approach can be effectively used for testing clinical COPD samples. We are confident that this approach can be generally useful for research and clinical applications in other relevant diseases. We will further develop this technology and aim to establish broad collaborations with cell migration researchers and industrial partners to enhance the applicability of this technology."
Additional co-authors of this TECHNOLOGY paper include Craig Hillier, Dr. Paul Komenda, Dr. Ricardo Lobato de Faria from Seven Oaks General Hospital in Winnipeg, Dr. Susy Santos from South Winnipeg Integrated Health & Social Services & Victoria General Hospital and River Heights/Fort Garry Community Areas, Dr. David Levin from the University of Manitoba, and Dr. Michael Zhang from Seven Oaks General Hospital in Winnipeg & Rizhao Hospital of Traditional Chinese Medicine in China.
This work was supported by Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Lin, financial assistance from CMC Microsystems to Wu and Lin, and graduate fellowship from Research Manitoba to Wu. This developed method was patented through the Technology Transfer Office at the University of Manitoba.
Corresponding author for this study in TECHNOLOGY is Professor Francis Lin, Ph.D., flin@physics.umanitoba.ca.
Fashioned as a high-impact, high-visibility, top-echelon publication, this new ground-breaking journal - TECHNOLOGY - will feature the development of cutting-edge new technologies in a broad array of emerging fields of science and engineering. The content will have an applied science and technological slant with a focus on both innovation and application to daily lives. It will cover diverse disciplines such as health and life science, energy and environment, advanced materials, technology-based manufacturing, information science and technology, and marine and transportations technologies.
About World Scientific Publishing Co.
World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 140 journals in various fields. World Scientific collaborates with prestigious organisations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit www.worldscientific.com.