Mindsteps to the Cosmos shows how modern global civilization depends on giant leaps of understanding that have been made in the past. Science and technology have been inspired and formulated by the sky — the cosmos in which we live. Human development could not have taken place on a cloud-shrouded planet. Mathematics was invented to track the movements of the sun, moon and stars even though back then these were thought to be gods. The space program has taken us beyond the earth, and satellite systems are exploring to the ends of the visible universe. This book provides the reader with algorithms to construct personal computer programs for finding the position of the moon and planets, and for calculating dates through historic periods in the Egyptian as well as the old and new style calendars.
https://doi.org/10.1142/9789812776778_fmatter
The following sections are included:
https://doi.org/10.1142/9789812776778_0001
Humans are unique. There is nothing on earth gifted with intelligence to equal Homo sapiens's. We are born of the cosmos, but is there a place for us in this glittering jewel box of galaxies and stars? The astronomical clock ticks in measured beats, and life cycles pulse like beacons on our delicate planet. Human minds open and reach out, but is there a cosmic destiny, and will it be fulfilled? Only recently have we been able to trace faintly our first steps as Sapiens, the Intelligent, and those vital threads before that time…
https://doi.org/10.1142/9789812776778_0002
We crawl, we walk, we run. Between birth and age 6 months the brain doubles in capacity, and humans are then equipped for coming to terms with the universe. But this reaching out is a gradual process. I can remember an exploration adventure at the age of three. I walked by the beach and the sea along Great Yarmouth's promenade on the east coast of England. I had slipped out of the yard full of comfortable toys and wandered unnoticed for about a quarter of a mile. Suddenly I was in an enormous world of flat red paving which stretched away from me in all directions. Like a comet at the end of its orbit I had reached my infinity. It was a scary experience, but someone managed to find out where I had started from and took me back to the yard. Years later I went back to look at that spot. The sidewalk was unchanged in front of the Wellington Pier. That red infinity of a 3-year-old now looked quite ordinary…
https://doi.org/10.1142/9789812776778_0003
John Punnet Peters galloped on an Arab stallion up to the mound of Niffar in central Iraq. He knew it was the site of the ancient city of Nippur. Thirty miles to the east was the mound of Babylon, 20 miles to the west was Shuruppak and 50 miles south, on the banks of the Euphrates, was the ancient city of Uruk, the Erech of the Bible. Peters headed an expedition from the University of Pennsylvania. The task was to dig for tablets. The date, late summer 1888…
https://doi.org/10.1142/9789812776778_0004
In mindstep 1 the cosmos was viewed like a planetarium show without the machine humming and controlling things from the center. The sun, moon and planets had an occult power of their own. They moved with their own force, willfully and independently. The slightest changes in the movement of the gods could be the signal or cause for changes on earth below. The panorama of the machineless planetarium was watched by the earthling audience carefully, apprehensively and meticulously…
https://doi.org/10.1142/9789812776778_0005
The ancient Britons and the Maya were linked by one thing—they were in the same mindstep. The Maya were too far away, separated from the next mindstep by a continent and 3,000 miles of ocean. The Britons were too early, separated from the next mindstep by 3,000 years of time. Both of these cultures lived and died under the same celestial vault. Both had imagery, fears and hopes. Both could handle raw stone and build monuments to conquer time. The Maya wrote with glyphs and codices, and their oral folklore was put down in Spanish by the missionaries. But the ancient Britons did not write. Their folklore is almost gone. It was not put down in writing by the Celts, nor the Romans. Today we have only a few scattered clues…
https://doi.org/10.1142/9789812776778_0006
Stonehenge was in its early phase in 2700 B.C., at the time the first pyramid was going up at Giza. Archaeologists used to think that the Nile pyramids came before Stonehenge, but now, with a correction to the radiocarbon dates, they know the building projects were going on simultaneously in Egypt and in England. Not that there was a direct connection. The two cultures were poles apart, different in language, customs and religion, with only the slightest contact, if any. Nor are the civilizations to be compared in wealth or power. But the radiocarbon clock now tells us that the two societies lived at the same time, and the astronomy reveals some of the same underlying motives for the structures that were built. The same stimuli, sun and moon, produced the same reactions. Those archways on Salisbury Plain make a cosmic connection, or so it would seem, and those pointed shapes viewed across the desert haze at Giza also connect. Like Stonehenge, the pyramids are a monument to the mindstep, the first structures to be made from cut and dressed stone, the largest stone constructions in the world—ancient or modern…
https://doi.org/10.1142/9789812776778_0007
Something happened in those states which were to become classical Greece. A spirit of inquiry developed. Questions were asked. Philosophies spread. The cosmos was about to change from something "up there" to something "out there." The arena of the gods was to dissolve into a concept of space and time, the planets to become objects, not demons. The fabric of the heavens was about to be pulled aside. Why a new mindstep should have started in Greece we do not know. Perhaps it was because democracy began there, and freedom of the person led to freedom of thought and release from superstition. Perhaps it was because the Greeks invented the first alphabet with vowels—those 24 Greek letters that in combination could express all spoken sounds, ideas and thoughts. (Our English alphabet of 26 letters is named in tribute after the first two letters of the Greek—alpha, beta.) The Egyptian hieroglyphs, even though there were hundreds of them, had ambiguities and were never precise in the conveying of meaning. Or perhaps the mindstep began in Greece because of the inspiration of those lovely green islands under crystal-clear skies…
https://doi.org/10.1142/9789812776778_0008
A mindstep takes hold slowly, but relentlessly. Ideas pass from brain to brain, changing the whole thought pattern. A dominant gene shapes the body of future generations, and a dominant meme shapes the mind. If it is not dominant it ultimately perishes, swamped by competing ideas. A mindstep once established will last indefinitely, like a species of plant or insect, until the next mindstep comes along. Just as a species requires a favorable environment to propagate, a mindstep takes hold and spreads when the conditions are right…
https://doi.org/10.1142/9789812776778_0009
Nicolaus Copernicus was a man of all seasons. Educated at the universities of Cracow, Bologna and Padua, he knew everything there was to know in Renaissance learning, from the Greek classics to medicine. He was given the position of Canon at Frauenburg cathedral by his mother's brother, Bishop Waczenrode, in 1497, but he postponed ecclesiastical duties for 6 years to study astronomy and get a doctorate in canon law. Ptolemy's Age of Order was now the decidua of dogma, and Copernicus was expected to believe without question that earthlings lived at the center of the universe, that everything else moved about them in perfect circles, and that the earth, nonplanet as it was taken to be, stood still…
https://doi.org/10.1142/9789812776778_0010
After Galileo, hundreds of astronomers took to the telescope. The universe was out there to be plumbed and fathomed. Galileo made his first telescope in May 1609 from 2 ordinary spectacle lenses. He put a long-sighted lens up front and a short-sighted lens at the rear. This was the way the telescope had been invented the previous year in Holland. Some say it was optician James Metius of cheese-town Alkmaar. Others say an assistant of spectacle-maker Hans Lippershey was bored with his job, held up an accidental combination of lenses to his eye and saw the weathervane on a steeple come close. Galileo took the idea and went on to grind lenses of higher power, finally reaching a magnification of 33. An object 330 feet away would then look as though it were only 10 feet from the eye…
https://doi.org/10.1142/9789812776778_0011
The sun's galaxy is a collection of 100 billion stars suspended in the darkness of space. There is a bright bulge at the center, and around it are swirling arms of stars and clouds of dust and ejected gas. It takes a ray of light 100,000 years to pass from one edge of the disc to the other, and the photon speeds at 186,000 miles per second. This lumbering, cosmic pinwheel rotates once every 200 million years or so, with stars at the edge moving more slowly than those at the center. Beyond the galaxy of the sun there are others spreading into the distance to unfathomable limits…
https://doi.org/10.1142/9789812776778_0012
It is difficult to fix the precise date of a mindstep, that instant when a new cosmic idea is certain to survive on earth. Precursors appear, show flittingly and die without connecting to the main thrust. We identify them only by hindsight, not because they were the root cause of the change of viewpoint. Then again, a mindstep starts quietly, almost unnoticed, like the first stirrings on the ocean surface that are later to develop into a great, crashing wave. For centuries Ptolemy's ordered system was known to only a few. Copernicus's revolutionary idea did not get into the textbooks of his time for almost 50 years. People can live and die untouched by a mindstep, left behind like flotsam as the change of perspective gathers strength beneath them and the rising crest moves on into the future…
https://doi.org/10.1142/9789812776778_0013
It's a long way from earth to infinity. The more we know, the less we understand. Facts about fundamental particles and the true nature of gravity elude the human mind. Our earth as a home shrinks with each new discovery of the Space Age. Alvin Toffler's book Future Shock warned us that the most dangerous attitude of humanity was to ignore the changes swirling about us and to complacently dwell in the past…
https://doi.org/10.1142/9789812776778_0014
I have singled out 4 astronomical mindsteps in the long sweep of history, and a zero-level threshold before that. Mindsteps can be likened to a staircase, where the new idea is the riser and the adjustment that follows is the tread. Or they can be looked on as steps forward in a long journey of understanding. There were others, of course, but I have selected these 5 leaps in understanding as the big ones, the ones with the greatest human impact. Galileo's telescopic discoveries could be included as a mindstep perhaps, but those events do not seem to me to be of the same magnitude as 0, 1, 2, 3, and 4. Copernicus reduced the earth to an ordinary planet and turned the stars into suns, but Galileo's discoveries only added emphasis and proof positive of the new viewpoint. If pressed further on this I think I would class Galileo's work as a substep—number 3.1, a part of the on-going Copernican revolution. Similarly Isaac Newton's discovery of the law of gravity would be 3.2. Some historians give greater significance to Kepler. His discovery of the elliptical orbits was far closer to the truth than the epicycles of Ptolemy and Copernicus, and the 3 planetary laws were vital precursors to Newton's work. If so, then Galileo moves to 3.2, and Kepler becomes 3.1. Then there is the question of where Albert Einstein's theory of relativity fits—is it a step or a substep? Personally I place relativity more in the field of physics than astronomy, more in the Age of Revolution than the Age of Space. True, general relativity predicts black holes and explains the redshift of distant galaxies, but even these astronomical concepts do not affect humanity with the major impact of a mindstep. Einstein's theory dealt with energy, photons and fast-moving things, not with life, and it is this human perspective that is so basic to a mindstep. These are all important points, but I will leave them open for debate…
https://doi.org/10.1142/9789812776778_bmatter
The following sections are included:
Gerald S Hawkins obtained two doctorates, in Astronomy and Physics, from the University of Manchester. He was a professor of astronomy and the chairman of the department at Boston University, and the dean of Dickinson College. A member of the Cosmos Club for 23 years, he went to Washington as Science Advisor to the United States Information Agency. Currently Dr Hawkins is a commission member of the International Astronomical Union, with over a hundred scientific papers on comets, asteroids, tektites and cosmology.