![]() |
This book contains 35 review articles on nanoscience and nanotechnology that were first published in Nature Nanotechnology, Nature Materials and a number of other Nature journals. The articles are all written by leading authorities in their field and cover a wide range of areas in nanoscience and technology, from basic research (such as single-molecule devices and new materials) through to applications (in, for example, nanomedicine and data storage).
Sample Chapter(s)
Challenges and Opportunites for Nanoscience and Technology (115 KB)
https://doi.org/10.1142/9789814287005_fmatter
The following sections are included:
https://doi.org/10.1142/9789814287005_0001
The defining characteristic of a nanomaterial is that its properties vary as a function of its size. This size dependence can be clearly observed in single-walled carbon nanotubes, where changes in structure at the atomic scale can modify the electronic and optical properties of these materials in a discontinuous manner (for example, changing metallic nanotubes to semiconducting nanotubes and vice versa). However, as most practical technologies require predictable and uniform performance, researchers have been aggressively seeking strategies for preparing samples of single-walled carbon nanotubes with well-defined diameters, lengths, chiralities and electronic properties (that is, uniformly metallic or uniformly semiconducting). This review highlights post-synthetic approaches for sorting single-walled carbon nanotubes — including selective chemistry, electrical breakdown, dielectrophoresis, chromatography and ultracentrifugation — and progress towards selective growth of monodisperse samples.
https://doi.org/10.1142/9789814287005_0002
Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of ‘relativistic’ condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
https://doi.org/10.1142/9789814287005_0003
Multiferroic materials, which show simultaneous ferroelectric and magnetic ordering, exhibit unusual physical properties — and in turn promise new device applications — as a result of the coupling between their dual order parameters. We review recent progress in the growth, characterization and understanding of thin-film multiferroics. The availability of high-quality thin-film multiferroics makes it easier to tailor their properties through epitaxial strain, atomic-level engineering of chemistry and interfacial coupling, and is a prerequisite for their incorporation into practical devices. We discuss novel device paradigms based on magnetoelectric coupling, and outline the key scientific challenges in the field.
https://doi.org/10.1142/9789814287005_0004
Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.
https://doi.org/10.1142/9789814287005_0005
The past 20 years have witnessed simultaneous multidisciplinary explosions in experimental techniques for synthesizing new materials, measuring and manipulating nanoscale structures, understanding biological processes at the nanoscale, and carrying out large-scale computations of many-atom and complex macromolecular systems. These advances have led to the new disciplines of nanoscience and nanoengineering. For reasons that are discussed here, most nanoparticles do not ‘self-assemble’ into their thermodynamically lowest energy state, and require an input of energy or external forces to ‘direct’ them into particular structures or assemblies. We discuss why and how a combination of self- and directed-assembly processes, involving interparticle and externally applied forces, can be applied to produce desired nanostructured materials.
https://doi.org/10.1142/9789814287005_0006
Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.
https://doi.org/10.1142/9789814287005_0007
The passage of individual molecules through nanosized pores in membranes is central to many processes in biology. Previously, experiments have been restricted to naturally occurring nanopores, but advances in technology now allow artificial solid-state nanopores to be fabricated in insulating membranes. By monitoring ion currents and forces as molecules pass through a solidstate nanopore, it is possible to investigate a wide range of phenomena involving DNA, RNA and proteins. The solid-state nanopore proves to be a surprisingly versatile new single-molecule tool for biophysics and biotechnology.
https://doi.org/10.1142/9789814287005_0008
The fabrication methods of the microelectronics industry have been refined to produce ever smaller devices, but will soon reach their fundamental limits. A promising alternative route to even smaller functional systems with nanometre dimensions is the autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces. This approach combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed. Once the mechanisms controlling the self-ordering phenomena are fully understood, the self-assembly and growth processes can be steered to create a wide range of surface nanostructures from metallic, semiconducting and molecular materials.
https://doi.org/10.1142/9789814287005_0009
In this review we chart recent advances in what is at once an old and very new field of endeavour – the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a discussion of design principles used to control linear and rotary motion in such molecular systems, this review will address the advances towards the construction of synthetic machines that can perform useful functions. Approaches taken by several research groups to construct wholly synthetic molecular machines and devices are compared. This will be illustrated with molecular rotors, elevators, valves, transporters, muscles and other motor functions used to develop smart materials. The demonstration of molecular machinery is highlighted through recent examples of systems capable of effecting macroscopic movement through concerted molecular motion. Several approaches to illustrate how molecular motor systems have been used to accomplish work are discussed. We will conclude with prospects for future developments in this exciting field of nanotechnology.
https://doi.org/10.1142/9789814287005_0010
Molecular substrates can be viewed as computational devices that process physical or chemical ‘inputs’ to generate ‘outputs’ based on a set of logical operators. By recognizing this conceptual crossover between chemistry and computation, it can be argued that the success of life itself is founded on a much longer-term revolution in information handling when compared with the modern semiconductor computing industry. Many of the simpler logic operations can be identified within chemical reactions and phenomena, as well as being produced in specifically designed systems. Some degree of integration can also be arranged, leading, in some instances, to arithmetic processing. These molecular logic systems can also lend themselves to convenient reconfiguring. Their clearest application area is in the life sciences, where their small size is a distinct advantage over conventional semiconductor counterparts. Molecular logic designs aid chemical (especially intracellular) sensing, small object recognition and intelligent diagnostics.
https://doi.org/10.1142/9789814287005_0011
Living systems use biological nanomotors to build life's essential molecules—such as DNA and proteins—as well as to transport cargo inside cells with both spatial and temporal precision. Each motor is highly specialized and carries out a distinct function within the cell. Some have even evolved sophisticated mechanisms to ensure quality control during nanomanufacturing processes, whether to correct errors in biosynthesis or to detect and permit the repair of damaged transport highways. In general, these nanomotors consume chemical energy in order to undergo a series of shape changes that let them interact sequentially with other molecules. Here we review some of the many tasks that biomotors perform and analyse their underlying design principles from an engineering perspective. We also discuss experiments and strategies to integrate biomotors into synthetic environments for applications such as sensing, transport and assembly.
https://doi.org/10.1142/9789814287005_0012
Long admired for its informational role in the cell, DNA is now emerging as an ideal molecule for molecular nanotechnology. Biologists and biochemists have discovered DNA sequences and structures with new functional properties, which are able to prevent the expression of harmful genes or detect macromolecules at low concentrations. Physical and computational scientists can design rigid DNA structures that serve as scaffolds for the organization of matter at the molecular scale, and can build simple DNA-computing devices, diagnostic machines and DNA motors. The integration of biological and engineering advances offers great potential for therapeutic and diagnostic applications, and for nanoscale electronic engineering.
https://doi.org/10.1142/9789814287005_0013
We are learning to build synthetic molecular machinery from DNA. This research is inspired by biological systems in which individual molecules act, singly and in concert, as specialized machines: our ambition is to create new technologies to perform tasks that are currently beyond our reach. DNA nanomachines are made by self-assembly, using techniques that rely on the sequence-specific interactions that bind complementary oligonucleotides together in a double helix. They can be activated by interactions with specific signalling molecules or by changes in their environment. Devices that change state in response to an external trigger might be used for molecular sensing, intelligent drug delivery or programmable chemical synthesis. Biological molecular motors that carry cargoes within cells have inspired the construction of rudimentary DNA walkers that run along self-assembled tracks. It has even proved possible to create DNA motors that move autonomously, obtaining energy by catalysing the reaction of DNA or RNA fuels.
https://doi.org/10.1142/9789814287005_0014
Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core–shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed.
https://doi.org/10.1142/9789814287005_0015
Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which ‘measures’ the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, ‘spin currents’ could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.
https://doi.org/10.1142/9789814287005_0016
Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.
https://doi.org/10.1142/9789814287005_0017
Scaling of the metal oxide semiconductor (MOS) field-effect transistor has been the basis of the semiconductor industry for nearly 30 years. Traditional materials have been pushed to their limits, which means that entirely new materials (such as high-k gate dielectrics and metal gate electrodes), and new device structures are required. These materials and structures will probably allow MOS devices to remain competitive for at least another ten years. Beyond this timeframe, entirely new device structures (such as nanowire or molecular devices) and computational paradigms will almost certainly be needed to improve performance. The development of new nanoscale electronic devices and materials places increasingly stringent requirements on metrology.
https://doi.org/10.1142/9789814287005_0018
The semiconductor industry has been able to improve the performance of electronic systems for more than four decades by making ever-smaller devices. However, this approach will soon encounter both scientific and technical limits, which is why the industry is exploring a number of alternative device technologies. Here we review the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons. Field-effect transistors based on semiconductor nanotubes and graphene nanoribbons have already been demonstrated, and metallic nanotubes could be used as high-performance interconnects. Moreover, owing to the excellent optical properties of nanotubes it could be possible to make both electronic and optoelectronic devices from the same material.
https://doi.org/10.1142/9789814287005_0019
Building an electronic device using individual molecules is one of the ultimate goals in nanotechnology. To achieve this it will be necessary to measure, control and understand electron transport through molecules attached to electrodes. Substantial progress has been made over the past decade and we present here an overview of some of the recent advances. Topics covered include molecular wires, twoterminal switches and diodes, three-terminal transistor-like devices and hybrid devices that use various different signals (light, magnetic fields, and chemical and mechanical signals) to control electron transport in molecules. We also discuss further issues, including molecule–electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools.
https://doi.org/10.1142/9789814287005_0020
A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.
https://doi.org/10.1142/9789814287005_0021
The presence of tiny holes in an opaque metal film, with sizes smaller than the wavelength of incident light, leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes and wavelength filtering. These intriguing effects are now known to be due to the interaction of the light with electronic resonances in the surface of the metal film, and they can be controlled by adjusting the size and geometry of the holes. This knowledge is opening up exciting new opportunities in applications ranging from subwavelength optics and optoelectronics to chemical sensing and biophysics.
https://doi.org/10.1142/9789814287005_0022
The design and realization of metallic nanostructures with tunable plasmon resonances has been greatly advanced by combining a wealth of nanofabrication techniques with advances in computational electromagnetic design. Plasmonics — a rapidly emerging subdiscipline of nanophotonics — is aimed at exploiting both localized and propagating surface plasmons for technologically important applications, specifically in sensing and waveguiding. Here we present a brief overview of this rapidly growing research field.
https://doi.org/10.1142/9789814287005_0023
Lasers and LEDs have a statistical distribution in the number of photons emitted within a given time interval. Applications exploiting the quantum properties of light require sources for which either individual photons, or pairs, are generated in a regulated stream. Here we review recent research on single-photon sources based on the emission of a single semiconductor quantum dot. In just a few years remarkable progress has been made in generating indistinguishable single photons and entangled-photon pairs using such structures. This suggests that it may be possible to realize compact, robust, LED-like semiconductor devices for quantum light generation.
https://doi.org/10.1142/9789814287005_0024
Biomimetics is the extraction of good design from nature. One approach to optical biomimetics focuses on the use of conventional engineering methods to make direct analogues of the reflectors and anti-reflectors found in nature. However, recent collaborations between biologists, physicists,engineers, chemists and materials scientists have ventured beyond experiments that merely mimic what happens in nature, leading to a thriving new area of research involving biomimetics through cell culture. In this new approach, the nanoengineering efficiency of living cells is harnessed and natural organisms such as diatoms and viruses are used to make nanostructures that could have commercial applications.
https://doi.org/10.1142/9789814287005_0025
Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.
https://doi.org/10.1142/9789814287005_0026
Nanotechnologies exploit materials and devices with a functional organization that has been engineered at the nanometre scale. The application of nanotechnology in cell biology and physiology enables targeted interactions at a fundamental molecular level. In neuroscience, this entails specific interactions with neurons and glial cells. Examples of current research include technologies that are designed to better interact with neural cells, advanced molecular imaging technologies, materials and hybrid molecules used in neural regeneration, neuroprotection, and targeted delivery of drugs and small molecules across the blood–brain barrier.
https://doi.org/10.1142/9789814287005_0027
A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.
https://doi.org/10.1142/9789814287005_0028
With its ability to observe, manipulate and explore the functional components of the biological cell at subnanometre resolution, atomic force microscopy (AFM) has produced a wealth of new opportunities in nanobiotechnology. Evolving from an imaging technique to a multifunctional ‘lab-on-a-tip’, AFM-based force spectroscopy is increasingly used to study the mechanisms of molecular recognition and protein folding, and to probe the local elasticity, chemical groups and dynamics of receptor–ligand interactions in live cells. AFM cantilever arrays allow the detection of bioanalytes with picomolar sensitivity, opening new avenues for medical diagnostics and environmental monitoring. Here we review the fascinating opportunities offered by the rapid advances in AFM.
https://doi.org/10.1142/9789814287005_0029
Most research on the toxicology of nanomaterials has focused on the effects of nanoparticles that enter the body accidentally. There has been much less research on the toxicology of nanoparticles that are used for biomedical applications, such as drug delivery or imaging, in which the nanoparticles are deliberately placed in the body. Moreover, there are no harmonized standards for assessing the toxicity of nanoparticles to the immune system (immunotoxicity). Here we review recent research on immunotoxicity, along with data on a range of nanotechnology-based drugs that are at different stages in the approval process. Research shows that nanoparticles can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface chemistry. Modifying these factors can significantly reduce the immunotoxicity of nanoparticles and make them useful platforms for drug delivery.
https://doi.org/10.1142/9789814287005_0030
Hospitals routinely treat patients suffering from overdoses of drugs or other toxic chemicals as a result of illicit drug consumption, suicide attempts or accidental exposures. However, for many life-threatening situations, specific antidotes are not available and treatment is largely based on emptying the stomach, administering activated charcoal or other general measures of intoxication support. A promising strategy for managing such overdoses is to inject nanocarriers that can extract toxic agents from intoxicated tissues. To be effective, the nanocarriers must remain in the blood long enough to sequester the toxic components and/or their metabolites, and the toxin bound complex must also remain stable until it is removed from the bloodstream. Here, we discuss the principles that govern the use of injectable nanocarriers in biodetoxification and review the pharmacological performance of a number of different approaches.
https://doi.org/10.1142/9789814287005_0031
The ability to tailor the chemical composition and structure of a surface at the sub-100-nm length scale is important for studying topics ranging from molecular electronics to materials assembly, and for investigating biological recognition at the single biomolecule level. Dip-pen nanolithography (DPN) is a scanning probe microscopy-based nanofabrication technique that uniquely combines direct-write soft-matter compatibility with the high resolution and registry of atomic force microscopy (AFM), which makes it a powerful tool for depositing soft and hard materials, in the form of stable and functional architectures, on a variety of surfaces. The technology is accessible to any researcher who can operate an AFM instrument and is now used by more than 200 laboratories throughout the world. This article introduces DPN and reviews the rapid growth of the field of DPN-enabled research and applications over the past several years.
https://doi.org/10.1142/9789814287005_0032
Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.
https://doi.org/10.1142/9789814287005_0033
Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.
https://doi.org/10.1142/9789814287005_0034
Advances in technology have allowed chemical sampling with high spatial resolution and the manipulation and measurement of individual molecules. Adaptation of these approaches to lab-on-a-chip formats is providing a new class of research tools for the investigation of biochemistry and life processes.
https://doi.org/10.1142/9789814287005_0035
One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.
“This collection of papers consists of some of the latest and most advanced reports in the field of nanoscience and nanotechnology. Topics covered include all aspects of the field: nano-optics, nanoelectronics, nanofabrication, DNA manipulation and nanobio. In each case the papers represent ground-breaking research, reported by some of the most prominent leaders in science and technology. This is a useful volume of value to all involved in today's research in nano-science and nanotechnology.”
“World Scientific and Nature should be applauded for publishing this collection of some of the most important papers in nanoscience. Pulling these papers together in one volume helps put the remarkable advances in this still very new field in perspective and stimulates thinking about future directions in nanoscience and technology. It will be an important resource for the community.”
“This volume is an important collection of some of the best nanoscience papers from Nature journals over the past few years, making it a valuable reference. The volume covers a broad range of seminal advances, covering topics such as nanoscale electronic and photonic materials, biological and medical applications, fabrication and assembly at the nanoscale, carbon and molecular-scale electronics, nano-optics and plasmonics, and many more. The collection of all these papers in one place makes it a must-have for any student or researcher in nanoscience.”
“There is a need for a book such as this that provides an introduction to the many areas of nanoscale science and technology.”
“This is a remarkable collection, surveying many forefronts of contemporary nanoscience and nanotechnology.”
“… the basic physics and chemistry of the technology presented will not be challenged for the foreseeable future, making this book an excellent time enduring reference, and the articles will provide a historical perspective, in the respective areas of nanotechnology, for past and future trends and directions in nanoscience and nanotechnology. The articles contained within the book are very well written, making them a pleasure to read. They also include high quality colour graphics that provide, for the reader, an elegant visual connection to what is being discussed in the text.”
Sample Chapter(s)
Challenges and Opportunites for Nanoscience and Technology (115k)