World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Fundamentals of Nanotransistors cover
IMPORTANT!
This ebook can only be accessed online and cannot be downloaded. See further usage restrictions.
Also available at Amazon and Kobo

The transistor is the key enabler of modern electronics. Progress in transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to device physics are less and less suitable. These lectures describe a way of understanding MOSFETs and other transistors that is much more suitable than traditional approaches when the critical dimensions are measured in nanometers. It uses a novel, “bottom-up approach” that agrees with traditional methods when devices are large, but that also works for nano-devices. Surprisingly, the final result looks much like the traditional, textbook, transistor models, but the parameters in the equations have simple, clear interpretations at the nanoscale. The objective is to provide readers with an understanding of the essential physics of nanoscale transistors as well as some of the practical technological considerations and fundamental limits. This book is written in a way that is broadly accessible to students with only a very basic knowledge of semiconductor physics and electronic circuits.

Complemented with online lecture by Prof Lundstrom: nanoHUB-U Nanoscale Transistor

Sample Chapter(s)
Front Matter
Lecture 1: Overview
Lecture 2: The Transistor as a Black Box
Lecture 3: The MOSFET: A Barrier-Controlled Device

 

Request Inspection Copy

 


Contents:

  • MOSFET Fundamentals:
    • Overview
    • The Transistor as a Black Box
    • The MOSFET: A Barrier-Controlled Device
    • MOSFET IV: Traditional Approach
    • MOSFET IV: The Virtual Source Model
  • MOS Electrostatics:
    • Poisson Equation and the Depletion Approximation
    • Gate Voltage and Surface Potential
    • Mobile Charge: Bulk MOS
    • Mobile Charge: Extremely Thin SOI
    • 2D MOS Electrostatics
    • The VS Model Revisited
  • The Ballistic MOSFET:
    • The Landauer Approach to Transport
    • The Ballistic MOSFET
    • The Ballistic Injection Velocity
    • Connecting the Ballistic and VS Models
  • Transmission Theory of the MOSFET:
    • Carrier Scattering and Transmission
    • Transmission Theory of the MOSFET
    • Connecting the Transmission and VS Models
    • VS Characterization of Transport in Nanotransistors
    • Limits and Limitations


Readership: Any student and professional with an undergraduate degree in the physical sciences or engineering.