World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
A Guide to Temporal Networks cover
Also available at Amazon and Kobo

Network science offers a powerful language to represent and study complex systems composed of interacting elements — from the Internet to social and biological systems. In its standard formulation, this framework relies on the assumption that the underlying topology is static, or changing very slowly as compared to dynamical processes taking place on it, e.g., epidemic spreading or navigation. Fuelled by the increasing availability of longitudinal networked data, recent empirical observations have shown that this assumption is not valid in a variety of situations. Instead, often the network itself presents rich temporal properties and new tools are required to properly describe and analyse their behaviour.

A Guide to Temporal Networks presents recent theoretical and modelling progress in the emerging field of temporally varying networks, and provides connections between different areas of knowledge required to address this multi-disciplinary subject. After an introduction to key concepts on networks and stochastic dynamics, the authors guide the reader through a coherent selection of mathematical and computational tools for network dynamics. Perfect for students and professionals, this book is a gateway to an active field of research developing between the disciplines of applied mathematics, physics and computer science, with applications in others including social sciences, neuroscience and biology.

Sample Chapter(s)
Chapter 1: Introduction (157 KB)


Contents:
  • Introduction
  • Mathematical Toolbox
  • Static Networks
  • Analysis of Temporal Networks
  • Models of Temporal Networks
  • Dynamics on Temporal Networks
  • Appendices:
    • Discrete-Time Random Walks on the Line
    • Transient and Absorbing States of Markov Chains
    • Derivation of the Degree Distribution of the Barabási-Albert Model
  • Bibliography

Readership: Students, professionals and researchers in the disciplines of applied mathematics, physics and computer science, with applications in others including social sciences, neuroscience and biology.