World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Increasing N200 Potentials Via Visual Stimulus Depicting Humanoid Robot Behavior

    https://doi.org/10.1142/S0129065715500392Cited by:22 (Source: Crossref)

    Achieving recognizable visual event-related potentials plays an important role in improving the success rate in telepresence control of a humanoid robot via N200 or P300 potentials. The aim of this research is to intensively investigate ways to induce N200 potentials with obvious features by flashing robot images (images with meaningful information) and by flashing pictures containing only solid color squares (pictures with incomprehensible information). Comparative studies have shown that robot images evoke N200 potentials with recognizable negative peaks at approximately 260ms in the frontal and central areas. The negative peak amplitudes increase, on average, from 1.2μV, induced by flashing the squares, to 6.7μV, induced by flashing the robot images. The data analyses support that the N200 potentials induced by the robot image stimuli exhibit recognizable features. Compared with the square stimuli, the robot image stimuli increase the average accuracy rate by 9.92%, from 83.33% to 93.25%, and the average information transfer rate by 24.56bits/min, from 72.18bits/min to 96.74 bits/min, in a single repetition. This finding implies that the robot images might provide the subjects with more information to understand the visual stimuli meanings and help them more effectively concentrate on their mental activities.

    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!