Volume independence for Yang–Mills fields on the twisted torus
Abstract
We review some recent results related to the notion of volume independence in SU(N) Yang–Mills theories. The topic is discussed in the context of gauge theories living on a d-dimensional torus with twisted boundary conditions. After a brief introduction reviewing the formalism for introducing gauge fields on a torus, we discuss how volume independence arises in perturbation theory. We show how, for appropriately chosen twist tensors, perturbative results to all orders in the 't Hooft coupling depend on a specific combination of the rank of the gauge group (N) and the periods of the torus (l), given by lN2/d, for d even. We discuss the well-known relation to noncommutative field theories and address certain threats to volume independence associated to the occurrence of tachyonic instabilities at one-loop order. We end by presenting some numerical results in 2+1 dimensions that extend these ideas to the nonperturbative domain.
Dedicated to the memory of our friend and colleague, Pierre van Baal
Remember to check out the Most Cited Articles! |
---|
Check out these new Particles Physics book |