World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

KCC Analysis of a One-Dimensional System During Catastrophic Shift of the Hill Function: Douglas Tensor in the Nonequilibrium Region

    https://doi.org/10.1142/S0218127420300323Cited by:9 (Source: Crossref)

    This paper considers the stability of a one-dimensional system during a catastrophic shift described by the Hill function. Because the shifting process goes through a nonequilibrium region, we applied the theory of Kosambi, Cartan, and Chern (KCC) to analyze the stability of this region based on the differential geometrical invariants of the system. Our results show that the Douglas tensor, one of the invariants in the KCC theory, affects the robustness of the trajectory during a catastrophic shift. In this analysis, the forward and backward shifts can have different Jacobi stability structures in the nonequilibrium region. Moreover, the bifurcation curve of the catastrophic shift can be interpreted geometrically, as the solution curve where the nonlinear connection and the deviation curvature become zero. KCC analysis also shows that even if the catastrophic pattern itself is similar, the stability structure in the nonequilibrium region is different in some cases, from the viewpoint of the Douglas tensor.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos