World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BIG DATA PROCESSING: BIG CHALLENGES AND OPPORTUNITIES

    https://doi.org/10.1142/S0219265912500090Cited by:26 (Source: Crossref)

    With the rapid growth of emerging applications like social network, semantic web, sensor networks and LBS (Location Based Service) applications, a variety of data to be processed continues to witness a quick increase. Effective management and processing of large-scale data poses an interesting but critical challenge. Recently, big data has attracted a lot of attention from academia, industry as well as government. This paper introduces several big data processing techniques from system and application aspects. First, from the view of cloud data management and big data processing mechanisms, we present the key issues of big data processing, including definition of big data, big data management platform, big data service models, distributed file system, data storage, data virtualization platform and distributed applications. Following the MapReduce parallel processing framework, we introduce some MapReduce optimization strategies reported in the literature. Finally, we discuss the open issues and challenges, and deeply explore the research directions in the future on big data processing in cloud computing environments.

    A preliminary version of this paper was presented at the International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN' 2012) in San Marcos, Texas, December 13–15, 2012.