World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Jacobi analysis for an unusual 3D autonomous system

    https://doi.org/10.1142/S0219887820500620Cited by:15 (Source: Crossref)

    Little seems to be known about the study of the chaotic system with only Lyapunov stable equilibria from the perspective of differential geometry. Therefore, this paper presents Jacobi analysis of an unusual three-dimensional (3D) autonomous chaotic system. Under certain parameter conditions, this system has positive Lyapunov exponents and only two linear stable equilibrium points, which means that chaotic attractor and Lyapunov stable equilibria coexist. The dynamical behavior of the deviation vector near the whole trajectories (including all equilibrium points) is analyzed in detail. The results show that the value of the deviation curvature tensor at equilibrium points is only related to parameters; the two equilibrium points of the system are Jacobi stable if the parameters satisfy certain conditions. Particularly, for a specific set of parameters, the linear stable equilibrium points of the system are always Jacobi unstable. A periodic orbit that is Lyapunov stable is also proven to be always Jacobi unstable. Next, Jacobi-stable regions of the Lorenz system, the Chen system and the system under study are compared for specific parameters. It can be found that although these three chaotic systems are very similar, their regions of Jacobi stable parameters are much different. Finally, by comparing Jacobi stability with Lyapunov stability, the obtained results demonstrate that the Jacobi stable parameter region is basically symmetric with the Lyapunov stable parameter region.

    AMSC: 34D35, 53B40, 53C60
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!