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Chapter 1

Lecture 1. Yang-Mills Theory

Prerequisites: (a) Canonic quantization in φ4 theory
and QED; (b) tree Feynman graphs; (c) basics of Lie
groups (mostly SU(N)), generators, representations –
fundamental and adjoint – group structure constants.

In the previous semester we covered basics and general aspects of quan-
tum field theory. In this semester we will consider some particular, the
most important field theories such as non-Abelian gauge theories (also
known as Yang-Mills theories). During the last six decades, Yang-Mills
theory has become the cornerstone of theoretical physics. It is seem-
ingly the only fully consistent relativistic quantum field theory in four
space-time dimensions. As such, it is the underlying theoretical frame-
work for the Standard Model of Particle Physics (a part of which is the
Glashow-Weinberg-Salam, GWS) model, which was proven to be the
correct theory at all currently measurable energies. For recommended
primary textbooks, see [1].

A few words are in order here as a warm-up introduction. Theo-
retical physics is an enormous subject, arguably, the most important
fundamental science of nature. It is convenient to classify it using the
so-called “magic cG~ cube” invented and discussed in the late 1920s
and early 1930s [2; 3]. It is shown in Fig. 1.1. Here c is the speed
of light in vacuum. (Also, it is the maximal velocity of any object in
nature.) It measures the extent of relativity. Next, G is the Newton
constant. It normalizes gravity. Finally, analogously to c, the quantity
~ is another fundamental constant, the so-called Planck constant. It
tells us when classical physics is overtaken by quantum physics. When
you come to take this lecture course, you are supposed to already know
all but two branches of theoretical physics indicated in Fig. 1.1.1 The
subject of my course is the phenomena which occur in systems with

1The back right upper corner is, perhaps, problematic.
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2 Quantum Field Theory II

typical velocities close to c and typical actions of the order of ~. This
is the front right lower corner of the cube. Near the front right upper
corner gravity effects become nonperturbative. This corner is supposed
to be described by a future theory. Perhaps, it will be string theory,
or something else, we do not know. And I will not venture into this
territory.

In this course, as in its first part, I will use the system of units in
which c = ~ = 1. If so, energy and momentum have dimension of
mass while length and spatial coordinates have dimension 1/mass. The
Newton constant then defines a “fundamental” mass, also known as the
Planck mass,

mP =
√
~c/G ≈ 1.22× 1019 GeV , (1.1)

or, given that c = ~ = 1,

G =
1

m2
P

. (1.2)
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Fig. 1.1 The cG~ cube of physics.
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Lecture 1. Yang-Mills Theory 3

1.1 Construction of non-Abelian gauge theories

As you remember, gauge symmetry is not a symmetry but, rather, a
redundancy in the description of the theory occurring when one elevates
a global symmetry to the status of local symmetry. Let us review first
the example of scalar QED (i.e. quantum electrodynamics of one scalar
complex field φ).

Let us start with the globally U(1) invariant theory 2

L = (∂µφ
†)(∂µφ)− V (|φ|) , (1.3)

where V is the potential,

V = −m2φ†φ+
λ

2
(φ†φ)2 . (1.4)

This theory has a symmetry under U(1) rotations,

φ→ eiα φ , α = const. (1.5)

Correspondingly, the theory has a continuous vacuum manifold. Any
point

φvac = eiα v ≡ eiα
m√
λ

(1.6)

is a valid vacuum (ground state). Above I assumed that the parameters
m and λ are real and positive.

Now we would like to make the above theory invariant under local
transformations with the phase α(~x, t). The potential V is obviously
invariant. However, the kinetic term is not. To make it invariant we
must add the photon field Aµ, and replace the partial derivative by a
covariant derivative, ∂µ → Dµ, such that φ and Dµφ transform in one
and the same way, namely,

φgt(x) = eiα(x) φ(x) , (Dµφ(x))gt = eiα(x) (Dµφ(x)) , (1.7)

where the subscript gt stands for gauged transformed, and the four-
coordinate xµ for brevity is written as x with the superscript omitted,
x ↔ {t, ~x}. The second equality in (1.7) can be viewed as a basic
definition of the covariant derivative. It is obviously satisfied if

Dµ = ∂µ − iAµ (1.8)

and the field Aµ(x) transforms as

Aµgt = Aµ + ∂µα(x) . (1.9)
2The metric used throughout this text is gµν = diag (1,−1,−1,−1).

 Q
ua

nt
um

 F
ie

ld
 T

he
or

y 
II

 D
ow

nl
oa

de
d 

fr
om

 w
or

ld
sc

ie
nt

if
ic

.c
om

by
 3

.1
43

.1
.5

7 
on

 0
5/

17
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



February 26, 2019 14:40 ws-book961x669 Quantum Field Theory II A˙QFT2˙12˙24˙18 page 4

4 Quantum Field Theory II

Combining (1.5), (1.8) and (1.9) it is very easy to check that (1.7) is
valid. In the case at hand we certainly know (from the classical theory
of electromagnetism) that the field Aµ which appeared in the process
of “gauging”3 is the electromagnetic four-potential. Its kinetic term is
proportional to FµνF

µν where

Fµν = ∂µAν − ∂νAµ . (1.10)

Let us note the following identity relating Fµν to a commutator 4 of
covariant derivatives:

F µν ≡ i [DµDν ] . (1.11)

It will help us carry out generalization to non-Abelian gauging.
Finally, the full Lagrangian takes the form

L = − 1

4e2
FµνF

µν + (Dµφ
†)(Dµφ)− V (|φ|) , (1.12)

where e is the coupling constant. From (1.8)–(1.10) it is clear that

(F µν)gt = F µν , (1.13)

implying that the Lagrangian (1.12) is fully invariant under the local
U(1) transformations presented in (1.7) and (1.8).

The phase of φ no longer presents a physical degree of freedom;
rather, it is absorbed in photon’s longitudinal polarization. (Remem-
ber, the photon acquires a mass provided the right-hand side in (1.6)
does not vanish; this phenomenon is called Higgsing.) Simultaneously,
the continuous vacuum manifold (1.6) shrinks into a single point since
one can always choose, say, α = 0 in (1.6) through a gauge condition
on the fields. All points in (1.6) are gauge equivalent. There are no
massless particles in the spectrum of the gauged theory with potential
(1.4), in contradistinction with the ungauged theory (1.3).

In general, all filed configurations related to each other by gauge
transformations represent one and the same point in the space of fields.
This is why gauging a global symmetry introduces redundancy.

***

Following the above pattern let us generalize the idea of gauging to
non-Abelian symmetries. Assume that the field φ in (1.7) now carries
an index i,

φ→ φi , (1.14)
3This is how the transition from global to local symmetry is referred to.
4It is assumed that the derivatives act on arbitrary complex functions.
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Lecture 1. Yang-Mills Theory 5

where for definiteness 5 we will choose i to be the index of the funda-
mental representation of SU(N),

i = 1, 2, ..., N . (1.15)

Then

φ† → φ†i , (1.16)

belongs to the antifundamental representation.
The Lagrangian (1.3) takes the form

L = (∂φ†i )(∂φ
i)− V (φ†iφ

i) . (1.17)

It is easy to see that it is invariant under a global SU(N) transformation.
Indeed, if

φ→ Uφ , φ† → φ†U † , (1.18)

where U is any constant unitary matrix with unit determinant, U ∈
SU(N), then

φ†iφ
i → φ†U † U φ→ φ†φ ;

(∂φ†i )(∂φ
i)→ (∂φ†)U †U(∂φ)→ (∂φ†)(∂φ) . (1.19)

The invariance of the Lagrangian (1.17) is obvious.
Now we want to make SU(N) local. Note that matrix U ∈ SU(N)

can be represented as

U = exp (iωaT a) , (1.20)

where T a are the generators of SU(N) and ωa are arbitrary parameters
which may or may not be x dependent, a = 1, 2, ..., N2 − 1. For SU(2)
the generators in the fundamental representation are proportional to
the Pauli matrices, and for SU(3) proportional to the Gell-Mann ma-
trices. In both cases the proportionality coefficient is 1/2. The standard
normalization of the generators in the fundamental representation is

Tr (T aT b) =
1

2
δab (1.21)

for any SU(N). The defining commutation relations for the generators
(in any representation) are

[T aT b] = ifabcT c , (1.22)
5The procedure is absolutely general and works for any representation of any non-Abelian

group.
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6 Quantum Field Theory II

where fabc are the group structure constants. For SU(2) one has fabc ≡
εabc, where εabc is the Levi-Civita antisymmetric tensor.6

The global invariance implies U = const by definition, which means,
in turn that all ωas in (1.20) are x independent. Now we want U to
depend on the space-time point, U → U(x). Correspondingly,

ωa → ωa(x) , a = 1, 2, ..., N2 − 1 . (1.23)

The potential term in (1.17) remains invariant under the local SU(N)
transformation. We want to generalize the kinetic term to be invariant
under any local (x-dependent) transformation.

To this end we need to define the covariant derivative in such a way
that, as in (1.7), after the gauge transformation (1.18),

(Dµφ(x))gt = U(x) (Dµφ(x)) . (1.24)

The solution to this equation is more contrived than in the Abelian the-
ory because of non-commutativity of different matrices U(x) ∈ SU(N).

Let us assume (the assumption to be justified a posteriori) that

Dµ = ∂µ − iAaµT a , (1.25)

where Aaµ are non-Abelian gauge fields called gauge bosons (analogs of

the electromagnetic four-potential), and T as representN2−1 generators
of SU(N). In QCD the Aaµ fields are called gluons, for historical reasons.

Equation (1.24) is satisfied provided that

Aµagt (x)T a = U(x)
(
Aµa(x)

)
T a U †(x)

︸ ︷︷ ︸
homogenious term

− i
(
∂µU(x)

)
U †(x)

︸ ︷︷ ︸
inhomogenious

. (1.26)

Indeed,

(Dµφ(x))gt = ∂µ (U(x)φ(x))

−i
[
U(x)

(
Aµa(x)

)
T a U †(x)− i

(
∂µU(x)

)
U †(x)

]
(U(x)φ(x))

= (∂µU(x))φ(x) + U(x)∂µφ(x)− iU(x)
(
Aµa(x)

)
T aφ(x)

− (∂µU(x))φ(x)

= U(x) [∂µφ(x)− i (Aµa)T aφ(x)] = U(x)Dµφ(x) . (1.27)

6The Levi-Civita tensor is also called permutation symbol or totally antisymmetric sym-
bol. Tullio Levi-Civita (1873-1941) was a famous Italian mathematician.
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Lecture 1. Yang-Mills Theory 7

For what follows it is useful to note that if ωa � 1, i.e. the gauge
matrix U(x) is close to unity (see (1.20)) then the change of Aµa under
the gauge transformation is

δAµa = ∂µωa + fabcAµ bωc = Dµωa . (1.28)

In non-Abelian gauge theories the product (Aµa)T a is often written
as Aµ. In this shorthand the SU(N) index a is hidden. One must
presume its presence from the context.

Examining Eq. (1.26) we note that, in contradistinction with the
Abelian gauge transformation, Aµagt (x)T a contains two terms: a non-
homogeneous term (the second term on the right-hand side) analogous
to what we had in the Abelian case, and an extra homogeneous term
specific for non-Abelian gauge theories.

Finally, we have to establish the kinetic term for the gauge bosons.
We will proceed analogously to Eq. (1.11). Assuming the covariant
derivatives that act on an arbitrary column of N complex functions,
we obtain

i [DµDν ] = ∂µAν − ∂νAµ − i [AµAν ]
def
= Gµν

=
[
∂µAν a − ∂νAµa + f bcaAµ bAν c

]
T a (1.29)

The combination in the square brackets is referred to as the gauge
field strength tensor, in analogy with the electromagnetic field strength
tensor,

Gµν a ≡ ∂µAν a − ∂νAµa + f bcaAµ bAν c . (1.30)

The nonlinear term on the right-hand side is absent in the Abelian case;
it is due to noncommutativity of the group generator matrices.

What is the gauge transformation of the gluon field strength tensor?
It is easy to derive it from Eq. (1.29) taking into account that

Dµ
gt = UDµU † . (1.31)

Then we find that

Gµν
gt = UGµνU † , (1.32)

which implies in turn that Tr(Gµν Gµν) is gauge invariant.
As a result, the kinetic term of the non-Abelian gauge field theory

can be written as

L = − 1

2g2
Tr (Gµν Gµν) = − 1

4g2

(
Gµν aGa

µν

)
, (1.33)

 Q
ua

nt
um

 F
ie

ld
 T

he
or

y 
II

 D
ow

nl
oa

de
d 

fr
om

 w
or

ld
sc

ie
nt

if
ic

.c
om

by
 3

.1
43

.1
.5

7 
on

 0
5/

17
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



February 26, 2019 14:40 ws-book961x669 Quantum Field Theory II A˙QFT2˙12˙24˙18 page 8

8 Quantum Field Theory II

where g is the gauge coupling constant. The full Lagrangian including
the gauge and matter fields is

L = − 1

2g2
Tr (Gµν Gµν) + (Dµφi)

†(Dµφ
i)− V (φ†iφ

i) . (1.34)

Equation (1.34) includes all relevant operators. I hasten to add,
however, that beyond perturbation theory we should add one extra
term (which is P and T odd), namely the so-called θ term,

Lθ =
θ

16π2
Tr
(
Gµν G̃µν

)
=

θ

32π2

(
Gµν a G̃a

µν

)
, (1.35)

where

G̃a
µν =

1

2
εµναβG̃

αβ a (1.36)

is the dual field strength tensor. This term introduces a new parame-
ter θ also known as the vacuum angle. Why the θ term is important
only beyond perturbation theory and where it comes from is a separate
(albeit important) topic to which we will turn much later, see page 240.

1.2 Fermion (quark) matter

In the above construction for pedagogical purposes I used the scalar
field in the fundamental representation. In theories relevant to nature,
as a rule, the matter sector consists of fermions. The fermion part of
the Lagrangian is basically the same as in QED, with the exception of
definition of the covariant derivative (see (1.25)),

Lferm =
∑

f

ψ̄f (i γµDµ −mf )ψ
f , (1.37)

where f is the flavor index, ψ is the Dirac fermion and mf is the mass
of the quark of flavor f in the representation R of the gauge group G.
Equation (1.37) is written for quantum chromodynamics; it is assumed
that all fermion fields are in the fundamental representation of the
gauge group SU(N) (in actuality, SU(3)), and so are the generators of
the gauge group in the covariant derivatives acting on the fermions.
Should we anticipate generalizations?

The answer is positive. First, in the Standard Model we deal with
the Weyl rather than Dirac fermions. This will be discussed in due time.
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Lecture 1. Yang-Mills Theory 9

Second, the matter fields need not be necessarily in the fundamental
representation. Generally speaking, we can consider matter fields in
any representation. The only change is that in Eq. (1.25) for the co-
variant derivative acting on the given matter field we must take the
generator matrices T a in the appropriate representation. For instance,
in supersymmetric Yang-Mills theory the fermions to be considered are
in the adjoint representation.

For real representations of the gauge group G (e.g. the adjoint rep-
resentation) the fermion fields in (1.37) can be Majorana fields.

1.3 Yukawa couplings

By definition, the Yukawa coupling is a three-field coupling: two of
the fields involved are fermionic and one is a boson spin-zero field.
Yukawa couplings exist only in special cases when the matter sector of
the Yang-Mills theory at hand contains such fields that one can built
a Lorentz-scalar gauge invariant operator from three fields. The mass
dimension of this term must be four (or D in the general D-dimensional
space). For instance, let us consider the SU(N) gauge theory with the
Dirac fermions in the fundamental representation and a complex scalar
field Φa in the adjoint representation. Then one could add to (1.34),
(1.37) the Yukawa term

LYukawa = h
(
ψ̄ T aψ

)
Φa , (1.38)

where T a’s are the generators of the SU(N) group in the fundamental
representation and h is a Yukawa coupling constant. Another popular
option is ψ̄ψΦ where Φ is a gauge singlet field. I advise you to play
with various representations of fermions and φ fields to build a variety
of Yukawa terms. You may also refresh your memory of the Yukawa
terms in the Glashow-Weinberg-Salam theory.

Appendix 1.1: C. N. Yang and Robert Mills

Yang and Mills had developed Yang-Mills theory (in 1954) in the con-
text of an attempt to describe the strong interactions of vector mesons,
such as ρ mesons. The SU(2) gauge theory they found did not work for
this purpose, since (as we now know) what was needed was an SU(3)
theory of colored quarks and gluons which came only 20 years later.
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10 Quantum Field Theory II

Fig. 1.2 In 1957 the Nobel Prize in Physics was awarded jointly to Chen Ning Yang
and Tsung-Dao (T.D.) Lee “for their penetrating investigation of the so-called parity
laws which has led to important discoveries regarding the elementary particles.”
Robert Laurence Mills (1927-1999) was a physicist, specializing in quantum field
theory, the theory of alloys, and many-body theory. While sharing an office at
Brookhaven National Laboratory, in 1954, Yang and Mills proposed what is now
called Yang-Mills field. Their original goal was to describe ρ mesons as gauge
bosons (i.e. gauge the isotopic symmetry of strong interactions). Mills became
Professor of Physics at the Ohio State University in 1956, and remained there until
his retirement in 1995.

In 1953, Pauli was interested in a six-dimensional theory of Einstein’s
field equations of general relativity along the lines suggested by Kaluza
and Klein in five dimensions. He compactified two extra dimensions
into two-dimensional sphere, which inevitably led him to SU(2) Yang-
Mills theory. However, non-Abelian gauge bosons remain massless, and
at that time the only massless fields known to physicists were photons
and gravitons, plus the neutrino postulated by Pauli in 1931, and not
yet discovered in 1953. Somewhere I read that, when asked why he
did not publish his research, Pauli said: “I have already introduced one
hypothetical massless particle, and I had no nerve to introduce more...”
(see [4], Chapter 1).
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Lecture 1. Yang-Mills Theory 11

Because of his super-high requirements for his own work in physics,
he put on hold publication on Yang-Mills, see below. In the meantime
the theory was independently developed by C. N. Yang and Robert
Mills, reported at a Princeton seminar and published in Physical Re-
view.

Yang recollects of a seminar he gave in Princeton where Pauli was
very critical and Pais was also present. Pauli was asking Yang about the
mass of the intermediate vector mesons (now gluons), probably know-
ing that they were massless and therefore a killer for the theory (there
are no massless hadrons). Yang responded he wasn’t sure of the an-
swer. Apparently, Pauli was so insistent and hostile with his questions
that Yang just sat down at the front row and stopped talking! Then
Oppenheimer encouraged him to continue delivering his talk, which he
did.

Pauli described his SU(2) version of Yang-Mills theory, before Yang
and Mills, in the letter to Abraham Pais [1] (page 171), entitled “Me-
son Nucleon Interaction and Differential Geometry” (written “to see
what it looks like,” in three days in July, (July 22-25 1953). See also
N. Straumann, [6].
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