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Abstract

In this survey article we highlight some recent developments in the
problems on affine fibrations. We show how some recent results com-
pletely determine the structure of an Al fibration over a seminormal
ring and how they can be used to prove a generalised epimorphism
theorem. We also show how the problem of A2 fibration over a two-
dimensional regular local ring is related to the problem of embedding
of a plane in affine 3-space over a discrete valuation ring.

1 Introduction

For a commutative local ring S and an S-algebra A, it is useful to know
in affine algebraic geometry, sufficient criteria for deciding whether A is a
polynomial ring in n variables over S. The following conditions are obviously

necessary :

(1) A is a finitely generated flat S-algebra.



(ii) For every prime ideal P of S, Ap/PAp is a polynomial ring in n vari-

ables over Sp/PSp.

(iii) Q45 is a free A-module of rank n.

One would like to know when these conditions are sufficient. In this article

we make a brief survey of recent developments in this direction.

We first recall some standard notations to be used throughout the article.
For a commutative ring S, S denotes a polynomial ring in n variables over
S. For a prime ideal P of S, k(P) denotes the field Sp/PSp. For an S-algebra
A, Q45 is the module of Kahler differentials of A over S.

2 General affine fibrations

Definition 2.1. For a commutative ring S, an S-algebra A is said to be an

affine n-fibration over S (denoted by A™), if the following conditions hold:
(i) A is a finitely generated flat S-algebra.
(ii) For every prime ideal P of S, A ®g k(P) = k(P).
Example 2.2. For a ring S, let B = S¥, M a projective module of rank
m over B and let A = Symp(M). Let n = £ + m. By the Quillen - Suslin

theorem ([13, Theorem 3] and [18, Theorem 1}) any projective module over

k(P)M is free and hence it is easy to see that A is an A™-fibration over S.



The following remarkable theorem of T.Asanuma gives a complete struc-

ture theorem for an A™-fibration over a noetherian ring S ([2, Theorem 3.4).

Theorem 2.3. Let S be a noetherian ring and A an A™-fibration over S.
Then Q45 is a projective A-module of rank n and A is (upto an isomorphism)

an S-subalgebra of a polynomial ring St™ for some m such that
A[m] = Syms[,..l(QA/s R4 S[m]).
If moreover Q 4/ is a free A-module (of rank n) then Al = Stm+n],

The general question of when an A™-fibration is an affine A™-bundle (i.e.,
locally a polynomial ring in n variables) was first raised by I1.V. Dolgachev

and B.Weisfeiler ([9]). As a consequence of Asanuma’s theorem it follows

(2], 3.5.) :

Corollary 2.4. Let S be a regular local ring. Then an A™ fibration A over
S is at least a stably polynomial algebra over S, i.e., AM = SI**+1 for some

integert > 0.

However, if S is not a regular local ring, then an A"™-fibration over S
need not be a stably polynomial algebra over S as the following examples

illustrate :

Example 2.5. ([20, 4.1]). Let k be a field of characteristic zero. Let
S = k[[t?,#%]] and A = S[X + tX?] + (¢2,13)S[X]. Then one can check that
A is an Al-fibration over S but A is not a stably polynomial algebra over S.
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Example 2.6. Let k be a field, $ = k[[t2,#%]), ] = (1 — 3X?%,¢2 — 3X)S5[X].
One can check that I is a projective S[X]-module of rank 1 which is not free.
Let A = Symgx)(I). Then A is an A?-fibration over S. But A is not a
stably polynomial algebra over S.

Example 2.7. Let S = C[X,Y, Z}xy.z)/(X*+ Y*+ Z*). Then S is a
normal local domain of dim 2. V. Srinivas has shown ([17, Sect. 3]) that
there exists a projective module P of rank 2 over S[X] which is not stably
free. Let A = Symgix)(P). Then A is an A3-fibration over S which is not a
stably polynomial algebra over S.

3 Al-fibration

We now discuss in detail the problem of Al-fibration. We first mention
two results of E. Hamann ([10, Theorems 2.6 and 2.8]) and R.G.Swan ([19,
Theorem 6.1]) respectively.

Theorem 3.1. If S,.q is a noetherian seminormal ring or if S contains the
field of rationals, then SM is S-invariant (i.e., if S C A and Al = S+l
then A = S11).

Theorem 3.2. If S,.q is a seminormal ring, then Pic (S™) = Pic (S)
for allm > 1.

From the theorems (2.3), (3.1) and (3.2) it is easy to deduce
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Theorem 3.3. Let S be a noetherian local ring such that S,.q is seminormal.

Let A be an A- fibration over S. Then A = SU.

Thus using a result of Bass-Connell-Wright (see (4.7)) one concludes
that if A is an Al-fibration over a noetherian seminormal ring S, then

A 2 Symg(P) for a projective S-module P of rank 1.

On the other hand, if S,.q4 is not seminormal then J.Yanik’s example (2.5)
shows than an Al-fibration A over S need not be even a stably polynomial al-
gebra over S. However if (14,5 is free then by (2.3), Alml = Slm+1l Therefore

using (3.1) we have

Theorem 3.4. Let S be a noetherian ring such that either S contains the
field of rationals or S,.q is seminormal. Let A be an Al-fibration over S such

that Qa5 is a free A-module. Then A = SU,

The necessity of the condition on 4,5 has been illustrated by example
(2.5). E.Hamann has given an example in ([10]) to illustrate the necessity of

the condition on S. We give below a similar example.
Example 3.5. Let R = Z3)[2v2], A = R[X,Y], S = R[F] where
F=X-2Y(V2X - Y?) + V2(V2X = Y?*)? = V2(Y — V2(V2X - Y?))*.

It has been shown in ([6],4.1) that A is an Al-fibration over § and Qs is
free but A # S (in fact R[X,Y]/(F) # RW).

In the context of the above example we remark that in ([6], Theorem 3.1)
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it was shown that for any noetherian ring R and an element
F € R[X,Y] which is algebraically independent over R, R[X,Y] is an Al-
fibration over R[F] if and only if R[X,Y] is a stably polynomial algebra over
R[F]. Also in view of Example (3.5) one may ask the following question :

Question 3.6. Let R be a noetherian domain. Let F € R[X,Y] be such
that R[X,Y] is an Al-fibration over R[F] and R[X,Y]/(F) = R(. Then is
R[X,Y] = R[F]1 ?

In connection with Question (3.6) we mention the following result of the

first author ([5]).

Proposition 3.7. For any commutative domain R of characteristic zero, if
F € R[X,Y] is such that R[X,Y]/(F) = RY, then R[X,Y] is an Al-fibration
over R[F] and Qgixy)/riF] is a free R[X,Y]-module.

Applying the results (2.3), (3.1) and (3.7) the following generalisation
of the famous Abhyankar-Moh epimorphism theorem ([1,Theorem 1.2]) was
obtained in ([5,Theorems 3.7 and 3.9]).

Theorem 3.8. For a commutative domain of characteristic zero which
is either seminormal or contains a field, R[X,Y]/(F) = RN implies that
R[X,Y] = R[F]1.

In view of Asanuma’s result that any A'-fibration over a noetherian ring
S is contained in a polynomial ring S for some m, one would like to know

under what conditions an S-subalgebra of St™! is an A'-fibration over S.
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Recently the authors investigated the problem and the following results were

obtained in ([8]).
Theorem 3.9. Let S be a noetherian ring and A an S-subalgebra of St™
such that

(i) A is S-flat.

(i) A ®@g k(P) are factorial domains for all prime ideals P of S and

dim (A®s k(P)) =1 for all minimal prime ideals P of S.

Then A is an Al-fibration over S.
Theorem 3.10. Let S be a noetherian ring containing a field of character-
istic zero and A an S-subalgebra of S™ such that

(i) A is S-flat.

(1) A ®g k(P) are 1-dimensional normal domains for all minimal prime

ideals P of S.

(i1i) A®s k(P) are integral domains for all prime ideals P of height 1 in S.

Then A is an Al-fibration over S.

Consequently, under the hypotheses of either (3.9) or (3.10), and the fur-
ther assumption that S,.q is seminormal, using the results (2.3), (3.1), (3.2)

and a theorem of Bass - Connell - Wright (see (4.7) below), one concludes
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that A = Symg(M) where M is a projective S-module of rank 1. Examples
have also been given in ([8]) to show that the conditions in (3.9) and (3.10)

are necessary.

4 Al-fibration

We now discuss problems in A%-fibration. In general an A?-fibration over
a noetherian ring S need not be even a stably polynomial algebra over S
as Example (2.6) showed. However, if S is a regular local ring then by
Asanuma’s result (2.4), if A is an A?-fibration over S then at least A™ =

Stm+2] for some integer m > 0. One would like to know if A = S,

In this direction, A.Sathaye first proved the following beautiful theorem

over a discrete valuation ring S. ([16, Theorem 1)) :

Theorem 4.1. Let S be a discrete valuation ring containing a field of char-

acteristic zero. Let A be an A-fibration over S. Then A = SH,

(Asanuma has shown in ([2, Theorem 3.1]) that it is not necessary to assume

that A is finitely generated over S).

Asanuma has also given the following example in ([2,-5.1]) to show that it

is necessary to assume in (4.1) that S contains a field of characteristic zero.



Example 4.2. Let § = Z, for some prime integer p. Let
A=Zy[X,Y,2)/(pZ -Y —Y? + X7')

where ¢ is an integer > 2 and (p,¢) = 1. Then A is an A2-fibration over S.
(2
But A # Z,).

One would now like to know whether an A%-fibration over a regular local
ring S of dimension > 2 is necessarily S. In view of Example (4.2) one of
course has to assume that S contains the field of rationals. The problem is

still open. As a starting point we ask the following question :

Question 4.3. Let k be a field of characteristic zero. Let S be a regular
two-dimensional affine k-spot (i.e., localisation of a regular affine k-algebra

at a prime ideal). Let A be an A2-fibration over S. Then is A = S® ?

In ([12]) M.P. Murthy has shown that if S is a regular local ring of dim 2,
then any projective module over St™ is free . Thus it follows from Asanuma’s

result (2.3) that in the situation of (4.3), Q4/s is a free A- module of rank 2.

We now show how Question (4.3) is connected with the following epimor-

phism problem over a discrete valuation ring :

Question 4.4. Let R be a discrete valuation ring containing a field of
characteristic zero. Let F € R[X,Y, Z] be such that R[X,Y, Z]/(F) = R.
Then is R[X,Y, Z] = R[F]® ?

We first state certain well-known results. The following result is due to
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H.Lindel ([11]) :

Theorem 4.5. Let k be a perfect field. Let S be a regular k-spot of dimension
n. Then there exists a field L such that k — L — S and an affine L-
algebra B with mazimal ideal M such that S = By and B/MB is a finite
separable extension of L. Moreover there exists a subring S; of S of the
form 81 = L[Xyq, -+, Xu)(Xy,~ Xu_1,6(X»)) and an element t € Sy such that the
canonical map Sy /tS; — S/tS is an isomorphism (where ¢ is the irreducible

polynomial of the simple field extension B/MB of L).
The following result of the first author can be proved using ideas in ([4]).

Lemma 4.6. Let R — S be noetherian domains such that R and S are
analytically isomorphic along t € R (i.e., the canonical map R/tR — S/tS
is an isomorphism). Given a finitely generated flat S-algebra A such that
A = SE"], there ezists a finitely generated flat R-algebra D such that D, =
RM A~D@gS and A/tA = D/tD. If A is an A™-fibration over S, then
D is an A™-fibration over R.

Next we state a patching up theorem of Bass - Connell - Wright ([3,
Theorem 4.4]) :

Theorem 4.7. Let A be a finitely presented S-algebra. Suppose that for all
mazimal ideals M of S, the Sy-algebra Apg is isomorphic to the symmetric
algebra of some Sy-module. Then A = Symg(P) for a finitely presented
S-module P.
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As a consequence of (4.1) and (4.7) and the fact that any projective

module over a P.ID is free, it is easy to see

Corollary 4.8. Let S be a P.I.D. containing a field of characteristic zero.
Let A be an A?-fibration over S. Then A = S13.

We now resume our discussion of Question (4.3). Recall that k is a field
of characteristic zero, S a regular affine k-spot of dimension 2 and A an
A?-fibration over S. Then by (4.5) there exists a field L in S containing k,
an affine L-algebra B and a maximal ideal M of B such that S = By and
B/MB is a finite separable extension of L. Also there exists a subring S; of
S and an element ¢ € 9; such that

(0)S1 = LU, Viwvy where B/MB = L[T)/(¢(T)) -
(ii) $1/tS = S/tS.

Now it is easy to see that S; is a P.I.D. and A; an A2-fibration over
S¢. Thus by (4.8), A = s, Using (i) and (ii) above and applying (4.6),
there exists a finitely generated flat algebra A; over S; such that A4,[1/t] =
Si[1/t)®, A= A ®s, S, A1/tA; = A[tA and A, is an A2-fibration over 5.

Let R = L{V]gv)). This is a discrete valuation ring with parameter ,
say. Now R[U] — S; and R[U}/(U) < 5:/(U)S;. Now Si[1/U] is clearly a
P.LD. and A; being an A%-fibration over Sy, 41[1/U] is also an A?-fibration
over S1[1/U}. Again applying (4.8), A;[1/U] = Si[1/U]®. Therefore, by
(4.6), there exists a finitely generated flat R[U]-algebra D such that
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(a) D is an A?-fibration over R[U].

(b) D[1/U] = R[U,1/UJA.

(c) A1 = D®gy)S1 and hence A = DQgp;S.
By (c) it follows that Question (4.3) would have an affirmative answer if we
can show that D = R[U)/. Unfortunately in the above situation (i.e., if D is
an R[U]-algebra over a d.v.r. R satisfying (a) and (b)) we even do not know

whether D = R let alone being R[U}®. So as a starting point we make the
assumption that D = R Note that the condition (a) is equivalent to

(@) Dx = R,[U)® and D/xD = (R/xR)[U]®.

We are thereby asking the following question :

Question 4.9. Let R be a discrete valuation ring containing the field of
rationals. Let w be a parameter of R, K = R, and k = R/mR. Let
F € R[X,Y, Z] be such that

(i) K[X,Y,Z] = K[F]2.

(i) k[X,Y, Z] = k[F)4.

(iii) R[X,Y,Z,1/F] = R[F,1/F]a.

Then is R[X,Y,Z] = R[F]® 7 (For a concrete example, see (4.13) below).
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Note that by (4.1), the conditions (i) and (ii) together imply that
R[X,Y,Z])/(F) = R®. We are thus naturally led to the Question (4.4)
raised earlier. Thus the A2-fibration problem over a two-dimensional regular
k-spot involves a question of A2-fibration over R[U] for a d.v.r. R which in
turn involves an epimorphism question over a d.v.r.. The Question (4.4) is
still open in general. The authors investigated the case of linear planes over

a d.v.r. and obtained the following result ([7, 3.5]):

Theorem 4.10. Let R be a discrete valuation ring (of any characteristic)

with parameter . Let F € R[X,Y, Z] be such that

() RIX,Y,2)/(F) = RS,

(i) F = f(X,Y)Z — g(X,Y) where f,g € R® and f(X,Y) ¢ TR[X,Y]).
Then R[X,Y,Z] = R[F)®.

This result may also be viewed as a generalisation of A. Sathaye’s theorem

on linear planes over a field ([15]) stated below.

Theorem 4.11. Let K be a field (of any characteristic) and F € K[X,Y, Z]
be such that

(i) KIX,Y, 2)/(F) = K®.

(i) F = f(X,Y)Z — g(X,Y) where f,g € K and f #0.

Then K[X,Y, Z] = K[F]®.
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Note that in the situation of (4.4), if K is the quotient field of R, then we
have K[X,Y, Z]/(F) = K®®. Thus to investigate (4.4) one would first ask if,
for a field K of ch. 0, an element F € K[X,Y, Z] satisfying K[X,Y, Z]/(F) =
K@ is necessarily a variable in K[X,Y, Z]. The most general answer known

so far is the following theorem of P. Russell and A. Sathaye ([14, 3.8.2]) :
Theorem 4.12. Let K be a field of characteristic zero and let F € K[X,Y, Z]
be such that

(i) K[X,Y,Z]/(F) = K&,

(i) F = Y fi(X,Y)Z with f; € K where g.c.d. (fi,+,fa) is a
0<i<n
non-unit in K[X,Y].

Then K[X,Y,Z) = K[F]®.

We conclude our discussion by giving a concrete non-trivial example of a

linear plane over a d.v.r..

Example 4.13. Let (R, x) be a discrete valuation ring containing the field

of rationals. Let K = R, and k = R/ R. Define F, G, H € R[X,Y,Z] as
F=@Y)Z+Y +7Y(X + X?) + 7*X.
G=rX+Y(YZ+ X+ X?).

H=7rZ - (YZ4+ X+ X)(x(2X +1)+Y(YZ + X + X?)).
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One can check that

() K[X,Y,Z] = K[F,G, H] (= K[F]¥).
(ii) k[X,Y, Z] = k[F)¥ (since F = Y).

(ii) R[X,Y,Z,1/F] = R[F,1/F,G)Y = R[F,1/F]?.

Note that by (i) and (ii) and Theorem (4.1), R[X,Y, Z]/(F) = R.
We end with the question

Question 4.14. In the above example, is R[X,Y, Z] = R[F|@ ?
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