On Affine Fibrations

S.M. Bhatwadekar and Amartya Kumar Dutta
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India e-mail: smb@tifrvax.bitnet and dutta@tifrvax.bitnet

Abstract

In this survey article we highlight some recent developments in the problems on affine fibrations. We show how some recent results completely determine the structure of an \mathbf{A}^{1} fibration over a seminormal ring and how they can be used to prove a generalised epimorphism theorem. We also show how the problem of \mathbf{A}^{2} fibration over a twodimensional regular local ring is related to the problem of embedding of a plane in affine 3 -space over a discrete valuation ring.

1 Introduction

For a commutative local ring S and an S-algebra A, it is useful to know in affine algebraic geometry, sufficient criteria for deciding whether A is a polynomial ring in n variables over S. The following conditions are obviously necessary :
(i) A is a finitely generated flat S-algebra.
(ii) For every prime ideal P of $S, A_{P} / P A_{P}$ is a polynomial ring in n variables over $S_{P} / P S_{P}$.
(iii) $\Omega_{A / S}$ is a free A-module of rank n.

One would like to know when these conditions are sufficient. In this article we make a brief survey of recent developments in this direction.

We first recall some standard notations to be used throughout the article. For a commutative ring $S, S^{[n]}$ denotes a polynomial ring in n variables over S. For a prime ideal P of $S, k(P)$ denotes the field $S_{P} / P S_{P}$. For an S-algebra $A, \Omega_{A / S}$ is the module of Kahler differentials of A over S.

2 General affine fibrations

Definition 2.1. For a commutative ring S, an S-algebra A is said to be an affine n-fibration over S (denoted by \mathbf{A}^{n}), if the following conditions hold:
(i) A is a finitely generated flat S-algebra.
(ii) For every prime ideal P of $S, A \otimes_{S} k(P)=k(P)^{[n]}$.

Example 2.2. For a ring S, let $B=S^{[l]}, M$ a projective module of rank m over B and let $A=\operatorname{Sym}_{B}(M)$. Let $n=\ell+m$. By the Quillen - Suslin theorem ([13, Theorem 3] and [18, Theorem 1]) any projective module over $k(P)^{[\ell]}$ is free and hence it is easy to see that A is an \mathbf{A}^{n}-fibration over S.

The following remarkable theorem of T.Asanuma gives a complete structure theorem for an $\mathbf{A}^{\mathbf{n}}$-fibration over a noetherian ring S ($[2$, Theorem 3.4). Theorem 2.3. Let S be a noetherian ring and A an $\mathbf{A}^{\mathbf{n}}$-fibration over S. Then $\Omega_{A / S}$ is a projective A-module of rank n and A is (upto an isomorphism) an S-subalgebra of a polynomial ring $S^{[m]}$ for some m such that

$$
A^{[m]} \cong \operatorname{Sym}_{S^{[m]}}\left(\Omega_{A / S} \otimes_{A} S^{[m]}\right)
$$

If moreover $\Omega_{A / S}$ is a free A-module (of rank n) then $A^{[m]}=S^{[m+n]}$.
The general question of when an $\mathbf{A}^{\boldsymbol{n}}$-fibration is an affine $\mathbf{A}^{\boldsymbol{n}}$-bundle (i.e., locally a polynomial ring in n variables) was first raised by I.V. Dolgachev and B.Weisfeiler ([9]). As a consequence of Asanuma's theorem it follows ([2], 3.5.) :

Corollary 2.4. Let S be a regular local ring. Then an \mathbf{A}^{n} fibration A over S is at least a stably polynomial algebra over S, i.e., $A^{[t]}=S^{[n+t]}$ for some integer $t \geq 0$.

However, if S is not a regular local ring, then an \mathbf{A}^{n}-fibration over S need not be a stably polynomial algebra over S as the following examples illustrate :

Example 2.5. ([20, 4.1]). Let k be a field of characteristic zero. Let $S=k\left[\left[t^{2}, t^{3}\right]\right]$ and $A=S\left[X+t X^{2}\right]+\left(t^{2}, t^{3}\right) S[X]$. Then one can check that A is an \mathbf{A}^{1}-fibration over S but A is not a stably polynomial algebra over S.

Example 2.6. Let k be a field, $S=k\left[\left[t^{2}, t^{3}\right]\right], I=\left(1-t^{2} X^{2}, t^{2}-t^{3} X\right) S[X]$. One can check that I is a projective $S[X]$-module of rank 1 which is not free. Let $A=\operatorname{Sym}_{S[X]}(I)$. Then A is an \mathbf{A}^{2}-fibration over S. But A is not a stably polynomial algebra over S.

Example 2.7. Let $S=\mathbf{C}[X, Y, Z]_{(X, Y, Z)} /\left(X^{4}+Y^{4}+Z^{4}\right)$. Then S is a normal local domain of $\operatorname{dim} 2$. V. Srinivas has shown ([17, Sect. 3]) that there exists a projective module P of rank 2 over $S[X]$ which is not stably free. Let $A=\operatorname{Sym}_{S[X]}(P)$. Then A is an $\mathbf{A}^{\mathbf{3}}$-fibration over S which is not a stably polynomial algebra over S.

$3 \quad \mathbf{A}^{1}$-fibration

We now discuss in detail the problem of \mathbf{A}^{1}-fibration. We first mention two results of E. Hamann ([10, Theorems 2.6 and 2.8]) and R.G.Swan ([19, Theorem 6.1]) respectively.

Theorem 3.1. If $S_{\text {red }}$ is a noetherian seminormal ring or if S contains the field of rationals, then $S^{[1]}$ is S-invariant (i.e., if $S \subseteq A$ and $A^{[m]}=S^{[m+1]}$, then $A=S^{[1]}$).

Theorem 3.2. If $S_{r e d}$ is a seminormal ring, then Pic $\left(S^{[m]}\right)=\operatorname{Pic}(S)$ for all $m \geq 1$.

From the theorems (2.3), (3.1) and (3.2) it is easy to deduce

Theorem 3.3. Let S be a noetherian local ring such that $S_{\text {red }}$ is seminormal. Let A be an \mathbf{A}^{1} - fibration over S. Then $A=S^{[1]}$.

Thus using a result of Bass-Connell-Wright (see (4.7)) one concludes that if A is an A^{1}-fibration over a noetherian seminormal ring S, then $A \cong \operatorname{Sym}_{S}(P)$ for a projective S-module P of rank 1 .

On the other hand, if $S_{\text {red }}$ is not seminormal then J.Yanik's example (2.5) shows than an \mathbf{A}^{1}-fibration A over S need not be even a stably polynomial algebra over S. However if $\Omega_{A / S}$ is free then by (2.3), $A^{[m]}=S^{[m+1]}$. Therefore using (3.1) we have

Theorem 3.4. Let S be a noetherian ring such that either S contains the field of rationals or $S_{r e d}$ is seminormal. Let A be an \mathbf{A}^{1}-fibration over S such that $\Omega_{A / S}$ is a free A-module. Then $A=S^{[1]}$.

The necessity of the condition on $\Omega_{A / S}$ has been illustrated by example (2.5). E.Hamann has given an example in ([10]) to illustrate the necessity of the condition on S. We give below a similar example.

Example 3.5. Let $R=\mathbf{Z}_{(2)}[2 \sqrt{2}], A=R[X, Y], S=R[F]$ where

$$
F=X-2 Y\left(\sqrt{2} X-Y^{2}\right)+\sqrt{2}\left(\sqrt{2} X-Y^{2}\right)^{2}-\sqrt{2}\left(Y-\sqrt{2}\left(\sqrt{2} X-Y^{2}\right)\right)^{4}
$$

It has been shown in $([6], 4.1)$ that A is an \mathbf{A}^{1}-fibration over S and $\Omega_{A / S}$ is free but $A \neq S^{[1]}$ (in fact $\left.R[X, Y] /(F) \neq R^{[1]}\right)$.

In the context of the above example we remark that in ([6], Theorem 3.1)
it was shown that for any noetherian ring R and an element $F \in R[X, Y]$ which is algebraically independent over $R, R[X, Y]$ is an $\mathbf{A}^{\mathbf{1}}$ fibration over $R[F]$ if and only if $R[X, Y]$ is a stably polynomial algebra over $R[F]$. Also in view of Example (3.5) one may ask the following question :

Question 3.6. Let R be a noetherian domain. Let $F \in R[X, Y]$ be such that $R[X, Y]$ is an \mathbf{A}^{1}-fibration over $R[F]$ and $R[X, Y] /(F)=R^{[1]}$. Then is $R[X, Y]=R[F]^{[1]} ?$

In connection with Question (3.6) we mention the following result of the first author ([5]).

Proposition 3.7. For any commutative domain R of characteristic zero, if $F \in R[X, Y]$ is such that $R[X, Y] /(F)=R^{[1]}$, then $R[X, Y]$ is an A^{1}-fibration over $R[F]$ and $\Omega_{R[X, Y] / R[F]}$ is a free $R[X, Y]$-module.

Applying the results (2.3), (3.1) and (3.7) the following generalisation of the famous Abhyankar-Moh epimorphism theorem ([1,Theorem 1.2]) was obtained in ([5, Theorems 3.7 and 3.9]).

Theorem 3.8. For a commutative domain of characteristic zero which is either seminormal or contains a field, $R[X, Y] /(F)=R^{[1]}$ implies that $R[X, Y]=R[F]^{[1]}$.

In view of Asanuma's result that any $\mathbf{A}^{\mathbf{1}}$-fibration over a noetherian ring S is contained in a polynomial ring $S^{[m]}$ for some m, one would like to know under what conditions an S-subalgebra of $S^{[m]}$ is an \mathbf{A}^{1}-fibration over S.

Recently the authors investigated the problem and the following results were obtained in ([8]).

Theorem 3.9. Let S be a noetherian ring and A an S-subalgebra of $S^{[m]}$ such that
(i) A is S-flat.
(ii) $A \otimes_{S} k(P)$ are factorial domains for all prime ideals P of S and $\operatorname{dim}\left(A \otimes_{S} k(P)\right)=1$ for all minimal prime ideals P of S.

Then A is an $\mathbf{A}^{\mathbf{1}}$-fibration over S.

Theorem 3.10. Let S be a noetherian ring containing a field of characteristic zero and A an S-subalgebra of $S^{[m]}$ such that
(i) A is S-flat.
(ii) $A \otimes_{S} k(P)$ are 1-dimensional normal domains for all minimal prime ideals P of S.
(iii) $A \otimes_{S} k(P)$ are integral domains for all prime ideals P of height 1 in S.

Then A is an \mathbf{A}^{1}-fibration over S.

Consequently, under the hypotheses of either (3.9) or (3.10), and the further assumption that $S_{\text {red }}$ is seminormal, using the results (2.3), (3.1), (3.2) and a theorem of Bass - Connell - Wright (see (4.7) below), one concludes
that $A \cong \operatorname{Sym}_{S}(M)$ where M is a projective S-module of rank 1. Examples have also been given in ([8]) to show that the conditions in (3.9) and (3.10) are necessary.

$4 \quad \mathbf{A}^{2}$-fibration

We now discuss problems in $\mathbf{A}^{\mathbf{2}}$-fibration. In general an $\mathbf{A}^{\mathbf{2}}$-fibration over a noetherian ring S need not be even a stably polynomial algebra over S as Example (2.6) showed. However, if S is a regular local ring then by Asanuma's result (2.4), if A is an \mathbf{A}^{2}-fibration over S then at least $A^{[m]}=$ $S^{[m+2]}$ for some integer $m \geq 0$. One would like to know if $A=S^{[2]}$.

In this direction, A.Sathaye first proved the following beautiful theorem over a discrete valuation ring S. ([16, Theorem 1]) :

Theorem 4.1. Let S be a discrete valuation ring containing a field of characteristic zero. Let A be an \mathbf{A}^{2}-fibration over S. Then $A=S^{[2]}$.
(Asanuma has shown in ([2, Theorem 3.1]) that it is not necessary to assume that A is finitely generated over S).

Asanuma has also given the following example in $([2,5.1])$ to show that it is necessary to assume in (4.1) that S contains a field of characteristic zero.

Example 4.2. Let $S=\mathrm{Z}_{(p)}$ for some prime integer p. Let

$$
A=\mathbf{Z}_{(p)}[X, Y, Z] /\left(p Z-Y-Y^{p q}+X^{\mathbf{p}^{\mathbf{2}}}\right)
$$

where q is an integer ≥ 2 and $(p, q)=1$. Then A is an \mathbf{A}^{2}-fibration over S. But $A \neq \mathbf{Z}_{(p)}^{[2]}$.

One would now like to know whether an $\mathbf{A}^{\mathbf{2}}$-fibration over a regular local ring S of dimension ≥ 2 is necessarily $S^{[2]}$. In view of Example (4.2) one of course has to assume that S contains the field of rationals. The problem is still open. As a starting point we ask the following question :

Question 4.3. Let k be a field of characteristic zero. Let S be a regular two-dimensional affine k-spot (i.e., localisation of a regular affine k-algebra at a prime ideal). Let A be an \mathbf{A}^{2}-fibration over S. Then is $A=S^{[2]}$?

In ([12]) M.P. Murthy has shown that if S is a regular local ring of dim 2, then any projective module over $S^{[m]}$ is free. Thus it follows from Asanuma's result (2.3) that in the situation of (4.3), $\Omega_{A / S}$ is a free A - module of rank 2.

We now show how Question (4.3) is connected with the following epimorphism problem over a discrete valuation ring :

Question 4.4. Let R be a discrete valuation ring containing a field of characteristic zero. Let $F \in R[X, Y, Z]$ be such that $R[X, Y, Z] /(F)=R^{[2]}$. Then is $R[X, Y, Z]=R[F]^{[2]}$?

We first state certain well-known results. The following result is due to
H.Lindel ([11]) :

Theorem 4.5. Let k be a perfect field. Let S be a regular k-spot of dimension n. Then there exists a field L such that $k \hookrightarrow L \hookrightarrow S$ and an affine L algebra B with maximal ideal M such that $S=B_{M}$ and $B / M B$ is a finite separable extension of L. Moreover there exists a subring S_{1} of S of the form $S_{1}=L\left[X_{1}, \cdots, X_{n}\right]_{\left(X_{1}, \cdots, X_{n-1}, \phi\left(X_{n}\right)\right)}$ and an element $t \in S_{1}$ such that the canonical map $S_{1} / t S_{1} \rightarrow S / t S$ is an isomorphism (where ϕ is the irreducible polynomial of the simple field extension $B / M B$ of L).

The following result of the first author can be proved using ideas in ([4]).
Lemma 4.6. Let $R \hookrightarrow S$ be noetherian domains such that R and S are analytically isomorphic along $t \in R$ (i.e., the canonical map $R / t R \rightarrow S / t S$ is an isomorphism). Given a finitely generated flat S-algebra A such that $A_{t}=S_{t}^{[n]}$, there exists a finitely generated flat R-algebra D such that $D_{t}=$ $R_{t}^{[n]}, A \cong D \otimes_{R} S$ and $A / t A \cong D / t D$. If A is an \mathbf{A}^{n}-fibration over S, then D is an \mathbf{A}^{n}-fibration over R.

Next we state a patching up theorem of Bass - Connell - Wright ([3, Theorem 4.4]) :

Theorem 4.7. Let A be a finitely presented S-algebra. Suppose that for all maximal ideals M of S, the S_{M}-algebra A_{M} is isomorphic to the symmetric algebra of some S_{M}-module. Then $A \cong \operatorname{Sym}_{S}(P)$ for a finitely presented S-module P.

As a consequence of (4.1) and (4.7) and the fact that any projective module over a P.I.D is free, it is easy to see

Corollary 4.8. Let S be a P.I.D. containing a field of characteristic zero. Let A be an $\mathbf{A}^{\mathbf{2}}$-fibration over S. Then $A=S^{[2]}$.

We now resume our discussion of Question (4.3). Recall that k is a field of characteristic zero, S a regular affine k-spot of dimension 2 and A an $\mathbf{A}^{\mathbf{2}}$-fibration over S. Then by (4.5) there exists a field L in S containing k, an affine L-algebra B and a maximal ideal M of B such that $S=B_{M}$ and $B / M B$ is a finite separable extension of L. Also there exists a subring S_{1} of S and an element $t \in S_{1}$ such that
(i) $S_{1}=L[U, V]_{(U, \phi(V))}$ where $B / M B=L[T] /(\phi(T))$.
(ii) $S_{1} / t S_{1} \vec{\sim} S / t S$.

Now it is easy to see that S_{t} is a P.I.D. and A_{t} an \mathbf{A}^{2}-fibration over S_{t}. Thus by (4.8), $A_{t}=S_{t}^{[2]}$. Using (i) and (ii) above and applying (4.6), there exists a finitely generated flat algebra A_{1} over S_{1} such that $A_{1}[1 / t]=$ $S_{1}[1 / t]^{[2]}, A \cong A_{1} \otimes_{S_{1}} S, A_{1} / t A_{1} \cong A / t A$ and A_{1} is an \mathbf{A}^{2}-fibration over S_{1}.

Let $R=L[V]_{(\phi(V))}$. This is a discrete valuation ring with parameter π, say. Now $R[U] \hookrightarrow S_{1}$ and $R[U] /(U) \approx S_{1} /(U) S_{1}$. Now $S_{1}[1 / U]$ is clearly a P.I.D. and A_{1} being an \mathbf{A}^{2}-fibration over $S_{1}, A_{1}[1 / U]$ is also an \mathbf{A}^{2}-fibration over $S_{1}[1 / U]$. Again applying (4.8), $A_{1}[1 / U]=S_{1}[1 / U]^{[2]}$. Therefore, by (4.6), there exists a finitely generated flat $R[U]$-algebra D such that
(a) D is an $\mathbf{A}^{\mathbf{2}}$-fibration over $R[U]$.
(b) $D[1 / U]=R[U, 1 / U]^{[2]}$.
(c) $A_{1} \cong D \otimes_{R[U]} S_{1}$ and hence $A \cong D \otimes_{R[U]} S$.

By (c) it follows that Question (4.3) would have an affirmative answer if we can show that $D=R[U]^{[2]}$. Unfortunately in the above situation (i.e., if D is an $R[U]$-algebra over a d.v.r. R satisfying (a) and (b)) we even do not know whether $D=R^{[3]}$ let alone being $R[U]^{[2]}$. So as a starting point we make the assumption that $D=R^{[3]}$. Note that the condition (a) is equivalent to

$$
\text { (a') } D_{\pi}=R_{\pi}[U]^{[2]} \text { and } D / \pi D=(R / \pi R)[U]^{[2]} \text {. }
$$

We are thereby asking the following question :

Question 4.9. Let R be a discrete valuation ring containing the field of rationals. Let π be a parameter of $R, K=R_{\pi}$ and $k=R / \pi R$. Let $F \in R[X, Y, Z]$ be such that
(i) $K[X, Y, Z]=K[F]^{[2]}$.
(ii) $k[X, Y, Z]=k[\bar{F}]^{[2]}$.
(iii) $R[X, Y, Z, 1 / F]=R[F, 1 / F]^{[2]}$.

Then is $R[X, Y, Z]=R[F]^{[2]}$? (For a concrete example, see (4.13) below).

Note that by (4.1), the conditions (i) and (ii) together imply that $R[X, Y, Z] /(F)=R^{[2]}$. We are thus naturally led to the Question (4.4) raised earlier. Thus the $\mathbf{A}^{\mathbf{2}}$-fibration problem over a two-dimensional regular k-spot involves a question of $\mathbf{A}^{\mathbf{2}}$-fibration over $R[U]$ for a d.v.r. R which in turn involves an epimorphism question over a d.v.r.. The Question (4.4) is still open in general. The authors investigated the case of linear planes over a d.v.r. and obtained the following result ([7, 3.5]):

Theorem 4.10. Let R be a discrete valuation ring (of any characteristic) with parameter π. Let $F \in R[X, Y, Z]$ be such that
(i) $R[X, Y, Z] /(F)=R^{[2]}$.
(ii) $F=f(X, Y) Z-g(X, Y)$ where $f, g \in R^{[2]}$ and $f(X, Y) \notin \pi R[X, Y]$.

Then $R[X, Y, Z]=R[F]^{[2]}$.

This result may also be viewed as a generalisation of A. Sathaye's theorem on linear planes over a field ([15]) stated below.

Theorem 4.11. Let K be a field (of any characteristic) and $F \in K[X, Y, Z]$ be such that
(i) $K[X, Y, Z] /(F)=K^{[2]}$.
(ii) $F=f(X, Y) Z-g(X, Y)$ where $f, g \in K^{[2]}$ and $f \neq 0$.

Then $K[X, Y, Z]=K[F]^{[2]}$.

Note that in the situation of (4.4), if K is the quotient field of R, then we have $K[X, Y, Z] /(F)=K^{[2]}$. Thus to investigate (4.4) one would first ask if, for a field K of ch. 0 , an element $F \in K[X, Y, Z]$ satisfying $K[X, Y, Z] /(F)=$ $K^{[2]}$ is necessarily a variable in $K[X, Y, Z]$. The most general answer known so far is the following theorem of P. Russell and A. Sathaye ([14, 3.8.2]) :

Theorem 4.12. Let K be a field of characteristic zero and let $F \in K[X, Y, Z]$ be such that
(i) $K[X, Y, Z] /(F)=K^{[2]}$.
(ii) $F=\sum_{0 \leq i \leq n} f_{i}(X, Y) Z^{i}$ with $f_{i} \in K^{[2]}$ where g.c.d. $\left(f_{1}, \cdots, f_{n}\right)$ is a non-unit in $K[X, Y]$.

Then $K[X, Y, Z]=K[F]^{[2]}$.

We conclude our discussion by giving a concrete non-trivial example of a linear plane over a d.v.r..

Example 4.13. Let (R, π) be a discrete valuation ring containing the field of rationals. Let $K=R_{\pi}$ and $k=R / \pi R$. Define $F, G, H \in R[X, Y, Z]$ as

$$
\begin{aligned}
& F=\left(\pi Y^{2}\right) Z+Y+\pi Y\left(X+X^{2}\right)+\pi^{2} X \\
& G=\pi X+Y\left(Y Z+X+X^{2}\right) \\
& H=\pi^{2} Z-\left(Y Z+X+X^{2}\right)\left(\pi(2 X+1)+Y\left(Y Z+X+X^{2}\right)\right)
\end{aligned}
$$

One can check that
(i) $K[X, Y, Z]=K[F, G, H]\left(=K[F]^{[2]}\right)$.
(ii) $k[X, Y, Z]=k[\bar{F}]^{[2]}$ (since $\left.\bar{F}=Y\right)$.
(iii) $R[X, Y, Z, 1 / F]=R[F, 1 / F, G]^{[1]}=R[F, 1 / F]^{[2]}$.

Note that by (i) and (ii) and Theorem (4.1), $R[X, Y, Z] /(F)=R^{[2]}$.

We end with the question

Question 4.14. In the above example, is $R[X, Y, Z]=R[F]^{[2]}$?

5 References

1. S.S. Abhyankar and T.T. Moh, Embeddings of the line in the plane, J. reine Angew. Math 276 (1975), 148-166.
2. T. Asanuma, Polynomial fibre rings of algebras over noetherian rings, Invent. Math. 87 (1987), 101-127.
3. H. Bass, E.H. Connell and D.L. Wright, Locally polynomial algebras are symmetric algebras, Invent. math. 38 (1977), 279-299.
4. S.M. Bhatwadekar, Analytic isomorphism and category of finitely generated modules, Communications in Algebra, 16(9), (1988), 1949-1958.
5. S.M. Bhatwadekar, Generalized epimorphism theorem, Proc. Indian. Acad.Sci (Math.Sci.), 98 (1988), 109-116.
6. S.M. Bhatwadekar and A.K. Dutta, On Residual Variables and stably Polynomial Algebras, Communications in Algebra, 21(2), (1993), 635645.
7. S.M. Bhatwadekar and A.K. Dutta, Linear planes over a D.V.R., to appear in the Journal of Algebra.
8. S.M. Bhatwadekar and A.K. Dutta, On \mathbf{A}^{1}-fibrations of R-subalgebras of $R\left[X_{1}, \cdots, X_{n}\right]$, Preprint.
9. I.V. Dolgachev and B. Weisfeiler, Unipotent group schemes over integral rings, Eng. translation of Izv. Akad. Nauk SSSR, Ser. Mat. Tom. 38 (1974), 757-799.
10. E. Hamann, On the R-invariance of $R[X]$, J. Algebra 35 (1975), 1-16.
11. H. Lindel, On the Bass-Quillen Conjecture concerning projective modules over polynomial rings, Invent. math. 65 (1981), 319-323.
12. M.P. Murthy, Projective $A[X]$-modules, J. London Math. Soc. 41 (1966), 453-456.
13. D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
14. P. Russell and A. Sathaye, On finding and cancelling variables in $\mathrm{k}[\mathrm{X}, \mathrm{Y}, \mathrm{Z}]$, J. Algebra 57 (1979), 153-166.
15. A. Sathaye, On Linear Planes, Proc. Amer. Math. Soc. 56 (1976), 1-7.
16. A. Sathaye, Polynomial Ring in Two Variables over a D.V.R. : A Criterion, Invent. math. 74 (1983), 159-168.
17. V. Srinivas, Vector bundles on the cone over a curve, Compositio Math. 47 (1982), 249-269.
18. A. Suslin, Projective modules over a polynomial ring are free, Soviet Math. Doklady, 17 (1976), 1160-1164 (English translation).
19. R.G. Swan, On seminormality, J. Algebra 67 (1980), 210-229.
20. J. Yanik, Projective Algebras, J. Pure and Applied Algebra 21 (1981), 339-358.
