Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Differential Geometry of Warped Product Manifolds and Submanifolds cover
Also available at Amazon and Kobo

A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson–Walker models, are warped product manifolds.

The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson–Walker's and Schwarzschild's.

The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.

The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.

Sample Chapter(s)
Foreword (185 KB)
Chapter 1: Riemannian and Pseudo-Riemannian Manifolds (285 KB)


Contents:
  • Riemannian and Pseudo-Riemannian Manifolds
  • Submanifolds
  • Warped Product Manifolds
  • Robertson-Walker Spacetimes and Schwarzschild Solution
  • Contact Metric Manifolds and Submersions
  • Kähler and Pseudo-Kähler Manifolds
  • Slant Submanifolds
  • Generic Submanifolds of Kähler Manifolds
  • CR-submanifolds of Kähler Manifolds
  • Warped Products in Riemannian and Kähler Manifolds
  • Warped Product Submanifolds of Kähler Manifolds
  • CR-warped Products in Complex Space Forms
  • More on CR-warped Products in Complex Space Forms
  • δ-invariants, Submersions and Warped Products
  • Warped Products in Nearly Kähler Manifolds
  • Warped Products in Para-Kähler Manifolds
  • Warped Products in Sasakian Manifolds
  • Warped Products in Affine Spaces

Readership: Graduate students and researchers interested in warped product manifolds and submanifolds in geometry, mathematical physics and general relativity.