World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Variational Principles for Second-Order Differential Equations cover

The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler–Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi–Civita for some Riemann metric.

To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer–Quillen–Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.


Contents:
  • An Introduction to Formal Integrability Theory of Partial Differential Systems
  • Frölicher–Nijenhuis Theory of Derivations
  • Differential Algebraic Formalism of Connections
  • Necessary Conditions for Variational Sprays
  • Obstructions to the Integrability of the Euler–Lagrange System
  • The Classification of Locally Variational Sprays on Two-Dimensional Manifolds
  • Euler–Lagrange Systems in the Isotropic Case

Readership: Mathematicians.