World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
The Geometry of the Octonions cover
Also available at Amazon and Kobo

There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.

Sample Chapter(s)
Chapter 1: Introduction (90 KB)


Contents:
    • Introduction
  • Number Systems:
    • The Geometry of the Complex Numbers
    • The Geometry of the Quaternions
    • The Geometry of the Octonions
    • Other Number Systems
  • Symmetry Groups:
    • Some Orthogonal Groups
    • Some Unitary Groups
    • Some Symplectic Groups
    • Symmetry Groups over Other Division Algebras
    • Lie Groups and Lie Algebras
    • The Exceptional Groups
  • Applications:
    • Division Algebras in Mathematics
    • Octonionic Eigenvalue Problems
    • The Physics of the Octonions
    • Magic Squares

Readership: Advanced undergraduate and graduate students and faculty in mathematics and physics; non-experts with moderately sophisticated mathematics background.