World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PRIMER SELECTION METHODS FOR DETECTION OF GENOMIC INVERSIONS AND DELETIONS VIA PAMP

    https://doi.org/10.1142/9781848161092_0036Cited by:1 (Source: Crossref)
    Abstract:

    Primer Approximation Multiplex PCR (PAMP) is a recently introduced experimental technique for detecting large-scale cancer genome lesions such as inversions and deletions from heterogeneous samples containing a mixture of cancer and normal cells. In this paper we give integer linear programming formulations for the problem of selecting sets of PAMP primers that minimize detection failure probability. We also show that PAMP primer selection for detection of anchored deletions cannot be approximated within a factor of 2 − ɛ, and give a 2-approximation algorithm for a special case of the problem. Experimental results show that our ILP formulations can be used to optimally solve medium size instances of the inversion detection problem, and that heuristics based on iteratively solving ILP formulations for a one-sided version of the problem give near-optimal solutions for anchored deletion detection with highly scalable runtime.